Immunoglobulin-like receptors and the generation of innate immune memory

2022 ◽  
Author(s):  
Mouhamad Al-Moussawy ◽  
Hossam A. Abdelsamed ◽  
Fadi G. Lakkis
Keyword(s):  
Author(s):  
Virginia L. De Sousa ◽  
Suzana B. Araújo ◽  
Leticia M. Antonio ◽  
Mariana Silva-Queiroz ◽  
Lilian C. Colodeti ◽  
...  

2020 ◽  
pp. 1-9
Author(s):  
Anaisa Valido Ferreira ◽  
Jorge Domiguéz-Andrés ◽  
Mihai Gheorghe Netea

Immunological memory is classically attributed to adaptive immune responses, but recent studies have shown that challenged innate immune cells can display long-term functional changes that increase nonspecific responsiveness to subsequent infections. This phenomenon, coined <i>trained immunity</i> or <i>innate immune memory</i>, is based on the epigenetic reprogramming and the rewiring of intracellular metabolic pathways. Here, we review the different metabolic pathways that are modulated in trained immunity. Glycolysis, oxidative phosphorylation, the tricarboxylic acid cycle, amino acid, and lipid metabolism are interplaying pathways that are crucial for the establishment of innate immune memory. Unraveling this metabolic wiring allows for a better understanding of innate immune contribution to health and disease. These insights may open avenues for the development of future therapies that aim to harness or dampen the power of the innate immune response.


2021 ◽  
Vol 22 (5) ◽  
pp. 2578
Author(s):  
Trim Lajqi ◽  
Christian Marx ◽  
Hannes Hudalla ◽  
Fabienne Haas ◽  
Silke Große ◽  
...  

Microglia, the innate immune cells of the CNS, exhibit long-term response changes indicative of innate immune memory (IIM). Our previous studies revealed IIM patterns of microglia with opposing immune phenotypes: trained immunity after a low dose and immune tolerance after a high dose challenge with pathogen-associated molecular patterns (PAMP). Compelling evidence shows that innate immune cells adopt features of IIM via immunometabolic control. However, immunometabolic reprogramming involved in the regulation of IIM in microglia has not been fully addressed. Here, we evaluated the impact of dose-dependent microglial priming with ultra-low (ULP, 1 fg/mL) and high (HP, 100 ng/mL) lipopolysaccharide (LPS) doses on immunometabolic rewiring. Furthermore, we addressed the role of PI3Kγ on immunometabolic control using naïve primary microglia derived from newborn wild-type mice, PI3Kγ-deficient mice and mice carrying a targeted mutation causing loss of lipid kinase activity. We found that ULP-induced IIM triggered an enhancement of oxygen consumption and ATP production. In contrast, HP was followed by suppressed oxygen consumption and glycolytic activity indicative of immune tolerance. PI3Kγ inhibited glycolysis due to modulation of cAMP-dependent pathways. However, no impact of specific PI3Kγ signaling on immunometabolic rewiring due to dose-dependent LPS priming was detected. In conclusion, immunometabolic reprogramming of microglia is involved in IIM in a dose-dependent manner via the glycolytic pathway, oxygen consumption and ATP production: ULP (ultra-low-dose priming) increases it, while HP reduces it.


2021 ◽  
pp. ji2100107
Author(s):  
Cody L. Stothers ◽  
Katherine R. Burelbach ◽  
Allison M. Owen ◽  
Naeem K. Patil ◽  
Margaret A. McBride ◽  
...  
Keyword(s):  

Cell ◽  
2018 ◽  
Vol 175 (6) ◽  
pp. 1463-1465 ◽  
Author(s):  
Mihai G. Netea ◽  
Leo A.B. Joosten

Sign in / Sign up

Export Citation Format

Share Document