Hydrolysis of β-1,3/1,6-glucan by glycoside hydrolase family 16 endo-1,3(4)-β-glucanase from the basidiomycete Phanerochaete chrysosporium

2005 ◽  
Vol 71 (6) ◽  
pp. 898-906 ◽  
Author(s):  
Rie Kawai ◽  
Kiyohiko Igarashi ◽  
Makoto Yoshida ◽  
Motomitsu Kitaoka ◽  
Masahiro Samejima
2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Yuya Kuritani ◽  
Kohei Sato ◽  
Hideo Dohra ◽  
Seiichiro Umemura ◽  
Motomitsu Kitaoka ◽  
...  

AbstractLevoglucosan (LG) is an anhydrosugar produced through glucan pyrolysis and is widely found in nature. We previously isolated an LG-utilizing thermophile, Bacillus smithii S-2701M, and suggested that this bacterium may have a metabolic pathway from LG to glucose, initiated by LG dehydrogenase (LGDH). Here, we completely elucidated the metabolic pathway of LG involving three novel enzymes in addition to LGDH. In the S-2701M genome, three genes expected to be involved in the LG metabolism were found in the vicinity of the LGDH gene locus. These four genes including LGDH gene (lgdA, lgdB1, lgdB2, and lgdC) were expressed in Escherichia coli and purified to obtain functional recombinant proteins. Thin layer chromatography analyses of the reactions with the combination of the four enzymes elucidated the following metabolic pathway: LgdA (LGDH) catalyzes 3-dehydrogenation of LG to produce 3-keto-LG, which undergoes β-elimination of 3-keto-LG by LgdB1, followed by hydration to produce 3-keto-d-glucose by LgdB2; next, LgdC reduces 3-keto-d-glucose to glucose. This sequential reaction mechanism resembles that proposed for an enzyme belonging to glycoside hydrolase family 4, and results in the observational hydrolysis of LG into glucose with coordination of the four enzymes.


2002 ◽  
Vol 68 (11) ◽  
pp. 5765-5768 ◽  
Author(s):  
Amber Vanden Wymelenberg ◽  
Stuart Denman ◽  
Diane Dietrich ◽  
Jennifer Bassett ◽  
Xiaochun Yu ◽  
...  

ABSTRACT Phanerochaete chrysosporium cellulase genes were cloned and characterized. The cel61A product was structurally similar to fungal endoglucanases of glycoside hydrolase family 61, whereas the cel9A product revealed similarities to Thermobifida fusca Cel9A (E4), an enzyme with both endo- and exocellulase characteristics. The fungal Cel9A is apparently a membrane-bound protein, which is very unusual for microbial cellulases. Transcript levels of both genes were substantially higher in cellulose-grown cultures than in glucose-grown cultures. These results show that P. chrysosporium possesses a wide array of conventional and unconventional cellulase genes.


2020 ◽  
Vol 67 (3) ◽  
pp. 79-86
Author(s):  
Sora Yamaguchi ◽  
Naoki Sunagawa ◽  
Mikako Tachioka ◽  
Kiyohiko Igarashi ◽  
Masahiro Samejima

2020 ◽  
Author(s):  
Sora Yamaguchi ◽  
Naoki Sunagawa ◽  
Mikako Tachioka ◽  
Kiyohiko Igarashi ◽  
Masahiro Samejima

AbstractThermal inactivation of saccharifying enzymes is a crucial issue for the efficient utilization of cellulosic biomass as a renewable resource. Cellobiohydrolases (CBHs) is a kind of cellulase. In general, CBHs belonging to glycoside hydrolase (GH) family 6 (Cel6) act synergistically with CBHs of GH family 7 (Cel7) and other carbohydrate-active enzymes during the degradation of cellulosic biomass. However, while the catalytic rate of enzymes generally becomes faster at higher temperatures, Cel6 CBHs are inactivated at lower temperatures than Cel7 CBHs, and this represents a limiting factor for industrial utilization. In this study, we produced a series of mutants of the glycoside hydrolase family 6 cellobiohydrolase PcCel6A from the fungus Phanerochaete chrysosporium, and compared their thermal stability. Eight mutants from a random mutagenesis library and one rationally designed mutant were selected as candidate thermostable mutants and produced by heterologous expression in the yeast Pichia pastoris. Comparison of the hydrolytic activities at 50 and 60 °C indicated that the thermal stability of PcCel6A is influenced by the number and position of cysteine residues that are not involved in disulfide bonds.


2016 ◽  
Vol 72 (1) ◽  
pp. 59-70 ◽  
Author(s):  
Min-Guan Lin ◽  
Meng-Chun Chi ◽  
Vankadari Naveen ◽  
Yi-Ching Li ◽  
Long-Liu Lin ◽  
...  

Trehalose-6-phosphate hydrolase (TreA) belongs to glycoside hydrolase family 13 (GH13) and catalyzes the hydrolysis of trehalose 6-phosphate (T6P) to yield glucose and glucose 6-phosphate. The products of this reaction can be further metabolized by the energy-generating glycolytic pathway. Here, crystal structures ofBacillus licheniformisTreA (BlTreA) and its R201Q mutant complexed withp-nitrophenyl-α-D-glucopyranoside (R201Q–pPNG) are presented at 2.0 and 2.05 Å resolution, respectively. The overall structure ofBlTreA is similar to those of other GH13 family enzymes. However, detailed structural comparisons revealed that the catalytic site ofBlTreA contains a long loop that adopts a different conformation from those of other GH13 family members. Unlike the homologous regions ofBacillus cereusoligo-1,6-glucosidase (BcOgl) andErwinia rhaponticiisomaltulose synthase (NX-5), the surface potential of theBlTreA active site exhibits a largely positive charge contributed by the four basic residues His281, His282, Lys284 and Lys292. Mutation of these residues resulted in significant decreases in the enzymatic activity ofBlTreA. Strikingly, the281HHLK284motif and Lys292 play critical roles in substrate discrimination byBlTreA.


2019 ◽  
Vol 85 (6) ◽  
Author(s):  
Masahiro Komeno ◽  
Honoka Hayamizu ◽  
Kiyotaka Fujita ◽  
Hisashi Ashida

ABSTRACT Arabinose-containing poly- or oligosaccharides are suitable carbohydrate sources for Bifidobacterium longum subsp. longum. However, their degradation pathways are poorly understood. In this study, we cloned and characterized the previously uncharacterized glycoside hydrolase family 43 (GH43) enzymes B. longum subsp. longum ArafC (BlArafC; encoded by BLLJ_1852) and B. longum subsp. longum ArafB (BlArafB; encoded by BLLJ_1853) from B. longum subsp. longum JCM 1217. Both enzymes exhibited α-l-arabinofuranosidase activity toward p-nitrophenyl-α-l-arabinofuranoside but no activity toward p-nitrophenyl-β-d-xylopyranoside. The specificities of the two enzymes for l-arabinofuranosyl linkages were different. BlArafC catalyzed the hydrolysis of α1,2- and α1,3-l-arabinofuranosyl linkages found on the side chains of both arabinan and arabinoxylan. It released l-arabinose 100 times faster from arabinan than from arabinoxylan but did not act on arabinogalactan. On the other hand, BlArafB catalyzed the hydrolysis of the α1,5-l-arabinofuranosyl linkage found on the arabinan backbone. It released l-arabinose from arabinan but not from arabinoxylan or arabinogalactan. Coincubation of BlArafC and BlArafB revealed that these two enzymes are able to degrade arabinan in a synergistic manner. Both enzyme activities were suppressed with EDTA treatment, suggesting that they require divalent metal ions. The GH43 domains of BlArafC and BlArafB are classified into GH43 subfamilies 27 and 22, respectively, but show very low similarity (less than 15% identity) with other biochemically characterized members in the corresponding subfamilies. The B. longum subsp. longum strain lacking the GH43 gene cluster that includes BLLJ_1850 to BLLJ_1853 did not grow in arabinan medium, suggesting that BlArafC and BlArafB are important for assimilation of arabinan. IMPORTANCE We identified two novel α-l-arabinofuranosidases, BlArafC and BlArafB, from B. longum subsp. longum JCM 1217, both of which are predicted to be extracellular membrane-bound enzymes. The former specifically acts on α1,2/3-l-arabinofuranosyl linkages, while the latter acts on the α1,5-l-arabinofuranosyl linkage. These enzymes cooperatively degrade arabinan and are required for the efficient growth of bifidobacteria in arabinan-containing medium. The genes encoding these enzymes are located side by side in a gene cluster involved in metabolic pathways for plant-derived polysaccharides, which may confer adaptability in adult intestines.


Author(s):  
Saeid Karkehabadi ◽  
Henrik Hansson ◽  
Nils Egil Mikkelsen ◽  
Steve Kim ◽  
Thijs Kaper ◽  
...  

The glycoside hydrolase family 3 (GH3) β-glucosidases are a structurally diverse family of enzymes. Cel3A fromNeurospora crassa(NcCel3A) belongs to a subfamily of key enzymes that are crucial for industrial biomass degradation. β-Glucosidases hydrolyse the β-1,4 bond at the nonreducing end of cellodextrins. The hydrolysis of cellobiose is of special importance as its accumulation inhibits other cellulases acting on crystalline cellulose. Here, the crystal structure of the biologically relevant dimeric form ofNcCel3A is reported. The structure has been refined to 2.25 Å resolution, with anRcrystandRfreeof 0.18 and 0.22, respectively.NcCel3A is an extensively N-glycosylated glycoprotein that shares 46% sequence identity withHypocrea jecorinaCel3A, the structure of which has recently been published, and 61% sequence identity with the thermophilic β-glucosidase fromRasamsonia emersonii.NcCel3A is a three-domain protein with a number of extended loops that deepen the active-site cleft of the enzyme. These structures characterize this subfamily of GH3 β-glucosidases and account for the high cellobiose specificity of this subfamily.


Sign in / Sign up

Export Citation Format

Share Document