Distribution, industrial applications, and enzymatic synthesis of d-amino acids

2015 ◽  
Vol 99 (8) ◽  
pp. 3341-3349 ◽  
Author(s):  
Xiuzhen Gao ◽  
Qinyuan Ma ◽  
Hailiang Zhu
2008 ◽  
Vol 59 (11) ◽  
Author(s):  
Iulia Lupan ◽  
Sergiu Chira ◽  
Maria Chiriac ◽  
Nicolae Palibroda ◽  
Octavian Popescu

Amino acids are obtained by bacterial fermentation, extraction from natural protein or enzymatic synthesis from specific substrates. With the introduction of recombinant DNA technology, it has become possible to apply more rational approaches to enzymatic synthesis of amino acids. Aspartase (L-aspartate ammonia-lyase) catalyzes the reversible deamination of L-aspartic acid to yield fumaric acid and ammonia. It is one of the most important industrial enzymes used to produce L-aspartic acid on a large scale. Here we described a novel method for [15N] L-aspartic synthesis from fumarate and ammonia (15NH4Cl) using a recombinant aspartase.


1984 ◽  
Vol 62 (5) ◽  
pp. 276-279 ◽  
Author(s):  
C. H. Lin ◽  
W. Chung ◽  
K. P. Strickland ◽  
A. J. Hudson

An isozyme of S-adenosylmethionine synthetase has been purified to homogeneity by ammonium sulfate fractionation, DEAE-cellulose column chromatography, and gel filtration on a Sephadex G-200 column. The purified enzyme is very unstable and has a molecular weight of 120 000 consisting of two identical subunits. Amino acid analysis on the purified enzyme showed glycine, glutamate, and aspartate to be the most abundant and the aromatic amino acids to be the least abundant. It possesses tripolyphosphatase activity which can be stimulated five to six times by S-adenosylmethionine (20–40 μM). The findings support the conclusion that an enzyme-bound tripolyphosphate is an obligatory intermediate in the enzymatic synthesis of S-adenosylmethionine from ATP and methionine.


2020 ◽  
Vol 21 (13) ◽  
pp. 4574
Author(s):  
Elena Rosini ◽  
Paola D’Antona ◽  
Loredano Pollegioni

D-enantiomers of amino acids (D-AAs) are only present in low amounts in nature, frequently at trace levels, and for this reason, their biological function was undervalued for a long time. In the past 25 years, the improvements in analytical methods, such as gas chromatography, HPLC, and capillary electrophoresis, allowed to detect D-AAs in foodstuffs and biological samples and to attribute them specific biological functions in mammals. These methods are time-consuming, expensive, and not suitable for online application; however, life science investigations and industrial applications require rapid and selective determination of D-AAs, as only biosensors can offer. In the present review, we provide a status update concerning biosensors for detecting and quantifying D-AAs and their applications for safety and quality of foods, human health, and neurological research. The review reports the main challenges in the field, such as selectivity, in order to distinguish the different D-AAs present in a solution, the simultaneous assay of both L- and D-AAs, the production of implantable devices, and surface-scanning biosensors. These innovative tools will push future research aimed at investigating the neurological role of D-AAs, a vibrant field that is growing at an accelerating pace.


2014 ◽  
Vol 357 (4) ◽  
pp. 767-774 ◽  
Author(s):  
Makoto Hibi ◽  
Takuya Kasahara ◽  
Takashi Kawashima ◽  
Hiroko Yajima ◽  
Shoko Kozono ◽  
...  

ChemInform ◽  
2009 ◽  
Vol 40 (52) ◽  
Author(s):  
Mari Hara Yasuda ◽  
Makoto Ueda ◽  
Kazuya Okano ◽  
Hisaaki Mihara ◽  
Nobuyoshi Esaki

2014 ◽  
Vol 70 (6) ◽  
pp. 1659-1668 ◽  
Author(s):  
Kwang-Hyun Park ◽  
Jong-Hyun Jung ◽  
Sung-Goo Park ◽  
Myeong-Eun Lee ◽  
James F. Holden ◽  
...  

A novel maltose-forming α-amylase (PSMA) was recently found in the hyperthermophilic archaeonPyrococcussp. ST04. This enzyme shows <13% amino-acid sequence identity to other known α-amylases and displays a unique enzymatic property in that it hydrolyzes both α-1,4-glucosidic and α-1,6-glucosidic linkages of substrates, recognizing only maltose units, in an exo-type manner. Here, the crystal structure of PSMA at a resolution of 1.8 Å is reported, showing a tight ring-shaped tetramer with monomers composed of two domains: an N-domain (amino acids 1–341) with a typical GH57 family (β/α)7-barrel fold and a C-domain (amino acids 342–597) composed of α-helical bundles. A small closed cavity observed in proximity to the catalytic residues Glu153 and Asp253 at the domain interface has the appropriate volume and geometry to bind a maltose unit, accounting for the selective exo-type maltose hydrolysis of the enzyme. A narrow gate at the putative subsite +1 formed by residue Phe218 and Phe452 is essential for specific cleavage of glucosidic bonds. The closed cavity at the active site is connected to a short substrate-binding channel that extends to the central hole of the tetramer, exhibiting a geometry that is significantly different from classical maltogenic amylases or β-amylases. The structural features of this novel exo-type maltose-forming α-amylase provide a molecular basis for its unique enzymatic characteristics and for its potential use in industrial applications and protein engineering.


2016 ◽  
Vol 94 (2) ◽  
pp. 197-204 ◽  
Author(s):  
Inka Brockhausen ◽  
Dileep G. Nair ◽  
Min Chen ◽  
Xiaojing Yang ◽  
John S. Allingham ◽  
...  

Glucosamine-6-phosphate N-acetyltransferase1 (GNA1) catalyses the transfer of an acetyl group from acetyl coenzyme A (AcCoA) to glucosamine-6-phosphate (GlcN6P) to form N-acetylglucosamine-6-phosphate (GlcNAc6P), which is an essential intermediate in UDP-GlcNAc biosynthesis. An analog of GlcNAc, N-butyrylglucosamine (GlcNBu) has shown healing properties for bone and articular cartilage in animal models of arthritis. The goal of this work was to examine whether GNA1 has the ability to transfer a butyryl group from butyryl-CoA to GlcN6P to form GlcNBu6P, which can then be converted to GlcNBu. We developed fluorescent and radioactive assays and examined the donor specificity of human GNA1. Acetyl, propionyl, n-butyryl, and isobutyryl groups were all transferred to GlcN6P, but isovaleryl-CoA and decanoyl-CoA did not serve as donor substrates. Site-specific mutants were produced to examine the role of amino acids potentially affecting the size and properties of the AcCoA binding pocket. All of the wild type and mutant enzymes showed activities of both acetyl and butyryl transfer and can therefore be used for the enzymatic synthesis of GlcNBu for biomedical applications.


2015 ◽  
Vol 357 (4) ◽  
pp. 605-605
Author(s):  
Makoto Hibi ◽  
Takuya Kasahara ◽  
Takashi Kawashima ◽  
Hiroko Yajima ◽  
Shoko Kozono ◽  
...  

2018 ◽  
Vol 317 (2) ◽  
pp. 643-666 ◽  
Author(s):  
Małgorzata Pająk ◽  
Katarzyna Pałka ◽  
Elżbieta Winnicka ◽  
Marianna Kańska

1996 ◽  
Vol 24 (1) ◽  
pp. 133S-133S ◽  
Author(s):  
John J. Milne ◽  
J. Paul G. Malthouse

Sign in / Sign up

Export Citation Format

Share Document