Expansion of CD11b+Ly6G+Ly6Cint cells driven by medroxyprogesterone acetate in mice bearing breast tumors restrains NK cell effector functions

2013 ◽  
Vol 62 (12) ◽  
pp. 1781-1795 ◽  
Author(s):  
Raúl Germán Spallanzani ◽  
Tomás Dalotto-Moreno ◽  
Ximena Lucía Raffo Iraolagoitia ◽  
Andrea Ziblat ◽  
Carolina Inés Domaica ◽  
...  
Blood ◽  
2008 ◽  
Vol 112 (11) ◽  
pp. 2626-2626 ◽  
Author(s):  
Benjamin J Schmiedel ◽  
Viktor Arélin ◽  
Matthias Krusch ◽  
Lothar Kanz ◽  
Helmut R Salih

Abstract The cytosine analogues 5-azacytosine (azacytidine) and 2′-deoxy-5-azacytidine (decitabine) display substantial therapeutic potential in patients with AML and MDS. Besides causing DNA demethylation, azanucleosides also mediate cytotoxic effects, and it appears that clinical responses are influenced by both epigenetic alterations and by apoptosis induction. However, the molecular changes induced by these drugs are still poorly understood. NK cells play an important role in tumor-immunosurveillance by confining development and progression of hematopoietic malignancies and are also important after therapeutic intervention like e.g. haploidentical stem cell transplantation. Thus it is important to define how a given therapeutic agent influences NK cell reactivity. Here we studied the effect of pharmacological concentrations of azacytidine and decitabine on NK cell effector functions. After preincubation with the azanucleosides (12h or more), NK cell cytotoxicity was found to be significantly enhanced by decitabine while, in contrast, azacytidine nearly completely abolished NK cell lysis of K562 and Raji target cells (up to 50% increase and 88% reduction, respectively; E:T ratio 10:1). Of note, modulation of NK cell cytotoxicity was also observed when the compounds were, after NK cell pretreatment, absent during the cytotoxicity assays. In contrast, neither the presence of either agent in cytotoxicity assays without preincubation nor pretreatment of target cells with either agent for 4h (corresponding to the time of the cytotoxicity assay) altered NK cell reactivity. These results indicate that azanucleosides are capable to modulate NK cell responsiveness to activating stimuli. In line, after pretreatment with the compounds NK cell IFN-γ production upon stimulation with IL-2 and IL-15 or in cocultures with target cells was found to be enhanced by decitabine but inhibited by azacytidine (up to 46% increase and 85% reduction, respectively). NK cell effector functions were not affected by deoxycytidine and cytidine, the physiological counterparts of the azanucleosides. While azacytidine treatment substantially induced NK cell apoptosis (about 30% after 24h) which may explain its inhibitory effect, no induction of apoptosis by decitabine was observed. Our data demonstrate that azacytidine and decitabine differentially affect NK cell anti-tumor reactivity and suggest that, while azacytidine causes NK cell apoptosis, decitabine enhances NK cell responsiveness via a yet unknown mechanism which is presently under study.


2009 ◽  
Vol 15 (2) ◽  
pp. 183-194 ◽  
Author(s):  
Veronika Bachanova ◽  
Valarie McCullar ◽  
Todd Lenvik ◽  
Rosanna Wangen ◽  
Karen A. Peterson ◽  
...  

2020 ◽  
Author(s):  
Iñigo Terrén ◽  
Ane Orrantia ◽  
Alba Mosteiro ◽  
Joana Vitallé ◽  
Olatz Zenarruzabeitia ◽  
...  

ABSTRACTNatural Killer (NK) cells acquire memory-like properties following a brief stimulation with IL-12, IL-15 and IL-18. These IL-12/15/18-stimulated NK cells, also known as cytokine-induced memory-like (CIML) NK cells, have been revealed as a powerful tool in cancer immunotherapy due to their persistence in the host and their increased effector functions. Several studies have shown that NK cells modulate their metabolism in response to cytokine-stimulation and other stimuli, suggesting that there is a link between metabolism and cellular functions. In this paper, we have analyzed metabolic changes associated to IL-12/15/18-stimulation and the relevance of glycolytic pathway for NK cell effector functions. We have found that CIML NK cells are able to retain increased glycolytic machinery seven days after cytokine withdrawal. Furthermore, we found that glycolytic inhibition with 2-DG is stimuli-dependent and that differently affects to distinct effector functions. These findings may have implications in the design of NK cell-based cancer immunotherapies.


PLoS ONE ◽  
2014 ◽  
Vol 9 (5) ◽  
pp. e97844 ◽  
Author(s):  
Izabela Todros-Dawda ◽  
Lise Kveberg ◽  
John T. Vaage ◽  
Marit Inngjerdingen

2012 ◽  
Vol 190 (1) ◽  
pp. 285-295 ◽  
Author(s):  
Michelle N. Kelly ◽  
Mingquan Zheng ◽  
Sanbao Ruan ◽  
Jay Kolls ◽  
Alain D’Souza ◽  
...  

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Iñigo Terrén ◽  
Ane Orrantia ◽  
Alba Mosteiro ◽  
Joana Vitallé ◽  
Olatz Zenarruzabeitia ◽  
...  

AbstractNatural Killer (NK) cells acquire memory-like properties following a brief stimulation with IL-12, IL-15 and IL-18. These IL-12/15/18-preactivated NK cells, also known as cytokine-induced memory-like (CIML) NK cells, have been revealed as a powerful tool in cancer immunotherapy due to their persistence in the host and their increased effector functions. Several studies have shown that NK cells modulate their metabolism in response to cytokine-stimulation and other stimuli, suggesting that there is a link between metabolism and cellular functions. In this paper, we have analyzed metabolic changes associated to IL-12/15/18-stimulation and the relevance of glycolytic pathway for NK cell effector functions. We have found CIML NK cells are able to retain a metabolic profile shifted towards glycolysis seven days after cytokine withdrawal. Furthermore, we found that treatment with 2-DG differently affects distinct NK cell effector functions and is stimuli-dependent. These findings may have implications in the design of NK cell-based cancer immunotherapies.


Author(s):  
Sarah B. Reusing ◽  
Dan A. Vallera ◽  
Angela R. Manser ◽  
Titus Vatrin ◽  
Sanil Bhatia ◽  
...  

AbstractSimilar to pediatric acute myeloid leukemia (AML) the subgroup of biphenotypic acute lymphoblastic leukemia (ALL) is a rare complex entity with adverse outcome, characterized by the surface expression of CD33. Despite novel and promising anti-CD19 targeted immunotherapies such as chimeric antigen receptor T cells and bispecific anti-CD19/CD3 antibodies, relapse and resistance remain a major challenge in about 30% to 60% of patients. To investigate the potential role of the fully humanized bispecific antibody CD16 × CD33 (BiKE) in children with CD33+ acute leukemia, we tested whether the reagent was able to boost NK cell effector functions against CD33+ AML and biphenotypic ALL blasts. Stimulation of primary NK cells from healthy volunteers with 16 × 33 BiKE led to increased cytotoxicity, degranulation and cytokine production against CD33+ cell lines. Moreover, BiKE treatment significantly increased degranulation, IFN-γ and TNF-α production against primary ALL and AML targets. Importantly, also NK cells from leukemic patients profited from restoration of effector functions by BiKE treatment, albeit to a lesser extent than NK cells from healthy donors. In particular, those patients with low perforin and granzyme expression showed compromised cytotoxic function even in the presence of BiKE. In patients with intrinsic NK cell deficiency, combination therapy of CD16xCD33 BiKE and allogeneic NK cells might thus be a promising therapeutic approach. Taken together, CD16xCD33 BiKE successfully increased NK cell effector functions against pediatric AML and biphenotypic ALL blasts and constitutes a promising new option for supporting maintenance therapy or “bridging” consolidation chemotherapy before hematopoietic stem cell transplantation.


2020 ◽  
Vol 8 (Suppl 3) ◽  
pp. A566-A566
Author(s):  
Tram Dao ◽  
Sandro Matosevic ◽  
Sagar Utturkar ◽  
Nadia Lanman

BackgroundNatural killer (NK) cells are part of the innate immune system, but are capable of participating in both innate and adaptive immune responses due to their wide range of cytolytic activities, from degranulation, secretion of cytokines to antibody-dependent cell-mediated cytotoxicity. These are possible due to the cells’ ability to recognize self and non-self-entities via the net signal generated from their activating and inhibitory receptors upon engagement. TIM-3 is a part of the NK receptor repertoire, expressed commonly on different lymphocytes. In T cells, TIM-3 is established as an inhibitory marker. However, in NK cells, the role of TIM-3 could be agonistic or antagonistic to NK cytotoxicity based on the disease type and activation status, though limited information is known about its role in cancer and its correlation to NK cell effector functions.MethodsWe measured TIM-3 expression upon activation of human NK cells under various conditions. NK cells were isolated from peripheral blood of healthy donors and expanded either in K562-based feeder media or feeder-free OpTmizerTM media. After expansion, they were co-cultured for 4 hours with patient-derived glioblastoma multiforme cells (GBM43) at effector:target ratios of 2.5:1 and 10:1. To evaluate the effect of TIM-3 expression on NK cells, 7AAD/CFSE killing assays, CD107a degranulation and IFNγ secretion assays were carried out while blocking TIM-3 with neutralizing antibodies. Bioinformatics analysis of GBM patient RNAseq data was carried out to correlate TIM-3 expression with in vivo function, and this analysis is supplemented by phenotyping TIM-3 on NK cells isolated from patient samples in order to infer the role of this receptor in GBM.ResultsWe found that TIM-3 was downregulated on OpTmizerTM -cultured NK cells once exposed to cancer targets, and this correlated to a decreased in NK killing capacity when compared to feeder media-cultured NK cells, where the downregulation was not observed. Culturing NK cells in different derivatives of both media suggested that a combination of serum and cytokines can induce TIM-3 expression change to cancer targets. Flow cytometric assays revealed that while degranulation remained the same, the decreased in cytotoxicity corresponded to a decrease in IFNγ secretion. In GBM patient datasets, TIM-3 expression correlates to high IFN-γ levels and associates with both pro- and anti-tumorigenic functions. Here, we report a new role of TIM-3 in modulating NK functionality by correlating its loss to a loss in NK cell effector functions, and how its expression can be modified by ex vivo activation.ConclusionsTIM-3 expression on NK cells can be induced by ex vivo expansion, and this change in expression could influence NK cytotoxicity and cytokine secretion. Our data suggested that TIM-3 is not necessarily an inhibitory marker in GBM, and more likely to be a status marker or an activation limiter, working in conjunction with other receptors to modulate NK cell anti-tumor responses.Ethics ApprovalThis study was approved by Purdue Intuition’s Ethics Board, approval number [1804020540].


Sign in / Sign up

Export Citation Format

Share Document