scholarly journals In vivo three-dimensional motion analysis of the shoulder joint during internal and external rotation

2011 ◽  
Vol 35 (10) ◽  
pp. 1503-1509 ◽  
Author(s):  
Hayato Koishi ◽  
Akira Goto ◽  
Makoto Tanaka ◽  
Yasushi Omori ◽  
Kazuma Futai ◽  
...  
2021 ◽  
Vol 22 (1) ◽  
Author(s):  
Phob Ganokroj ◽  
Nuchanun Sompornpanich ◽  
Pichitpol Kerdsomnuek ◽  
Bavornrat Vanadurongwan ◽  
Pisit Lertwanich

Abstract Background Measurement of hip rotation is a crucial clinical parameter for the identification of hip problems and the monitoring of symptoms. The objective of this study was to determine whether the use of two smartphone applications is valid and reliable for the measurement of hip rotation. Methods An experimental, cross-sectional study was undertaken to assess passive hip internal and external rotation in three positions by two examiners. The hip rotational angles were measured by a smartphone clinometer application in the sitting and prone positions, and by a smartphone compass application in the supine position; their results were compared with those of the standard, three-dimensional, motion analysis system. The validities and inter-rater and intra-rater reliabilities of the smartphone applications were evaluated. Results The study involved 24 participants. The validities were good to excellent for the internal rotation angles in all positions (ICC 0.81–0.94), good for the external rotation angles in the prone position (ICC 0.79), and fair for the sitting and supine positions (ICC 0.70–0.73). The measurement of the hip internal rotation in the supine position had the highest ICC value of 0.94 (0.91, 0.96). The two smartphone applications showed good-to-excellent intra-rater reliability, but good-to-excellent inter-rater reliability for only three of the six positions (two other positions had fair reliability, while one position demonstrated poor reliability). Conclusions The two smartphone applications have good-to-excellent validity and intra-rater reliability, but only fair-to-good inter-rater reliability for the measurement of the hip rotational angle. The most valid hip rotational position in this study was the supine IR angle measurement, while the lowest validity was the ER angle measurement in the sitting position. The smartphone application is one of the practical measurements in hip rotational angles. Trial registration Number 20181022003 at the Thai Clinical Trials Registry (http://www.clinicaltrials.in.th) which was retrospectively registered at 2018-10-18 15:30:29.


2020 ◽  
Vol 33 (5) ◽  
pp. 761-767
Author(s):  
Yongwook Kim ◽  
Seungmook Kang

BACKGROUND: Few studies have explored the relationship between muscle strength, range of motion (ROM), and balance in the horizontal plane of the hip joint using three-dimensional (3D) motion analysis. OBJECTIVE: We investigate the relationships of hip internal rotation (IR) and external rotation (ER) ROM, measured using a 3D motion capture system, with hip internal and external rotator strength and single-leg standing balance. METHODS: The participants were 40 healthy adults. Kinematic data on hip ROM were collected using an eight-camera motion analysis system. Hip rotational strength measurements were obtained using hand-held isometric dynamometry. A Single-leg standing test and a pendular test were conducted to evaluate static and dynamic balance ability using BioRescue. RESULTS: Significant correlations were found between hip strength and each variable measured during hip ROM assessments (p< 0.05). Significant positive correlations were found between the hip IR/ER strength ratio and the IR/ER ROM ratio (r= 0.72, p< 0.01). The subgroup with a normal IR/ER ratio of hip rotator strength and ROM showed significantly better dynamic balance ability than the subgroup with a hip rotator muscle imbalance (p< 0.05). CONCLUSIONS: There is a significant relationship between hip IR/ER strength and IR/ER ROM with a normal hip IR/ER strength and ROM ratio positively affecting dynamic balance ability.


2009 ◽  
Vol 21 (03) ◽  
pp. 223-232 ◽  
Author(s):  
Tsung-Yuan Tsai ◽  
Tung-Wu Lu ◽  
Mei-Ying Kuo ◽  
Horng-Chaung Hsu

Skin marker-based stereophotogrammetry has been widely used in the in vivo, noninvasive measurement of three-dimensional (3D) joint kinematics in many clinical applications. However, the measured poses of body segments are subject to errors called soft tissue artifacts (STA). No study has reported the unrestricted STA of markers on the thigh and shank in normal subjects during functional activities. The purpose of this study was to assess the 3D movement of skin markers relative to the underlying bones in normal subjects during functional activities using a noninvasive method based on the integration of 3D fluoroscopy and stereophotogrammetry. Generally, thigh markers had greater STA than shank ones and the STA of the markers were in nonlinear relationships with knee flexion angles. The STA of a marker also appeared to vary among subjects and were affected by activities. This suggests that correction of STA in human motion analysis may have to consider the multijoint nature of functional activities such as using a global compensation approach with individual anthropometric data. The results of the current study may be helpful for establishing guidelines of marker location selection and for developing STA compensation methods in human motion analysis.


2016 ◽  
Vol 138 (9) ◽  
Author(s):  
Koren E. Roach ◽  
Bibo Wang ◽  
Ashley L. Kapron ◽  
Niccolo M. Fiorentino ◽  
Charles L. Saltzman ◽  
...  

Measurements of joint kinematics are essential to understand the pathomechanics of ankle disease and the effects of treatment. Traditional motion capture techniques do not provide measurements of independent tibiotalar and subtalar joint motion. In this study, high-speed dual fluoroscopy images of ten asymptomatic adults were acquired during treadmill walking at 0.5 m/s and 1.0 m/s and a single-leg, balanced heel-rise. Three-dimensional (3D) CT models of each bone and dual fluoroscopy images were used to quantify in vivo kinematics for the tibiotalar and subtalar joints. Dynamic tibiotalar and subtalar mean joint angles often exhibited opposing trends during captured stance. During both speeds of walking, the tibiotalar joint had significantly greater dorsi/plantarflexion (D/P) angular ROM than the subtalar joint while the subtalar joint demonstrated greater inversion/eversion (In/Ev) and internal/external rotation (IR/ER) than the tibiotalar joint. During balanced heel-rise, only D/P and In/Ev were significantly different between the tibiotalar and subtalar joints. Translational ROM in the anterior/posterior (AP) direction was significantly greater in the subtalar than the tibiotalar joint during walking at 0.5 m/s. Overall, our results support the long-held belief that the tibiotalar joint is primarily responsible for D/P, while the subtalar joint facilitates In/Ev and IR/ER. However, the subtalar joint provided considerable D/P rotation, and the tibiotalar joint rotated about all three axes, which, along with translational motion, suggests that each joint undergoes complex, 3D motion.


2005 ◽  
Vol 23 (4) ◽  
pp. 750-756 ◽  
Author(s):  
Akira Goto ◽  
Hisao Moritomo ◽  
Tsuyoshi Murase ◽  
Kunihiro Oka ◽  
Kazuomi Sugamoto ◽  
...  

Author(s):  
Hwai-Ting Lin ◽  
Yu-Chuan Lin ◽  
You-Li Chou ◽  
Hung-Chien Wu ◽  
Rong-Tyai Wang ◽  
...  

Previous studies have reported that pitchers with glenohumeral internal rotation deficit (GIRD) may increase the risk of shoulder injury. However, limited information is available regarding the specific effects of GIRD in baseball pitching. The purpose of this study was to investigate whether baseball pitchers with GIRD change their pitching mechanism. Fifteen baseball pitchers with GIRD and 15 pitchers without GIRD were recruited from university or senior high-school teams. A three-dimensional motion analysis system (Eagle System, Motion Analysis Corporation, Santa Rosa, CA, USA) was used to capture the pitching motion while performing fastball pitches. The kinematics and kinetics of the throwing shoulder and trunk were analyzed based on motion captured data. The Mann–Whitney U test was used to test the differences of the analyzed parameters between two groups. At the instant of ball release, the GIRD group showed lower shoulder external rotation and trunk rotation, and larger shoulder horizontal adduction. In addition, the GIRD group exhibited a significantly larger shoulder inferior force in the cocking and acceleration phase, and a significantly larger internal rotation torque in the acceleration phase. The present results suggested that pitchers with GIRD need stretch training to enlarge joint range of motion, and to improve trunk strength and flexibility to alleviate potential problems associated with pitching in GIRD pitchers.


2006 ◽  
Vol 24 (5) ◽  
pp. 1028-1035 ◽  
Author(s):  
Kunihiro Oka ◽  
Kazuteru Doi ◽  
Koichi Suzuki ◽  
Tsuyoshi Murase ◽  
Akira Goto ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document