scholarly journals Chronic exposure to urban noise during the vocal learning period does not lead to increased song frequencies in zebra finches

2020 ◽  
Vol 75 (1) ◽  
Author(s):  
Ying Liu ◽  
Sue Anne Zollinger ◽  
Henrik Brumm

Abstract It has often been observed that birds sing at a higher pitch in cities and other areas that are polluted with intense low-frequency noise. How this pattern arises remains unclear though. One prevailing idea is that songbirds adjust song frequencies to environmental noise profiles through developmental plasticity via vocal learning. However, the conclusions of previous studies testing this hypothesis are inconsistent. Here we report the findings from two song learning experiments with zebra finches (Taenopygia guttata), in which we exposed young birds to anthropogenic noise during their sensitive vocal learning period. Unlike previous studies that addressed this issue, we did not use constant synthetic noise but natural urban noise with its typical amplitude fluctuations that was broadcast at realistic sound levels. We found that noise-exposed males in neither experiment developed higher pitched songs compared to control males. This suggests that the natural fluctuations between higher and lower noise levels in cities may allow young birds to exploit relatively quiet moments to hear their tutors and themselves, permitting them to make accurate copies of even low-frequency song elements. Significance statement If animals are to persist in urban habitats, they often must adjust their behavior to the altered conditions. Birds in cities are often observed to sing at a higher pitch, but we are largely ignorant of how this phenomenon arises. We investigated whether low-frequency traffic noise interferes with the song learning of birds so that they develop higher pitched songs. Accordingly, we played back natural traffic noise from urban bird habitats to young birds during their learning period and then analyzed their adult songs. We found that birds that learned their songs in noise did not sing at higher frequencies compared to control males that learned their song with no noise exposure. Our results show that typical traffic noise in cities may not be sufficient to interfere with vocal learning in a way that birds develop higher-pitched songs.

2019 ◽  
Vol 9 (24) ◽  
pp. 5566 ◽  
Author(s):  
Juliana Araújo Alves ◽  
Lígia Torres Silva ◽  
Paula Remoaldo

Noise pollution is the second most harmful environmental stressor in Europe. Portugal is the fourth European country most affected by noise pollution, whereby 23.0% of the population is affected. This article aims to analyze the effects of exposure to low frequency noise pollution, emitted by power poles and power lines, on the population’s well-being, based on a study of “exposed” and “unexposed” individuals in two predominantly urban areas in north-western Portugal. To develop the research, we used sound level (n = 62) and sound recording measurements, as well as adapted audiometric test performance (n = 14) and surveys conducted with the resident population (n = 200). The sound levels were measured (frequency range between 10 to 160 Hz) and compared with a criterion curve developed by the Department for Environment, Food and Rural Affairs (DEFRA). The sound recorded was performed 5 m away from the source (400 kV power pole). Surveys were carried out with the “exposed” and “unexposed” populations, and adapted audiometric tests were performed to complement the analysis and to determine the threshold of audibility of “exposed” and “unexposed” volunteers. The “exposed” area has higher sound levels and, consequently, more problems with well-being and health than the “unexposed” population. The audiometric tests also revealed that the “exposed” population appears to be less sensitive to low frequencies than the “unexposed” population.


2019 ◽  
Vol 887 ◽  
pp. 547-552
Author(s):  
Mihai Vanca ◽  
Josef Lechleitner ◽  
Ardeshir Mahdavi

The present contribution reports on the results of sound level measurements in a number of locations in the city of Vienna, Austria. Thereby, a primary objective was to determine the degree to which the measurement results agree with corresponding information in the E.N.D. (Environmental Noise Directive 2002/49/EC) maps. Moreover, the relationship between the low-frequency segment of the acoustical exposure to the broad-band data was investigated. The results point to traffic as the main source of urban noise exposure. E.N.D. maps appear to provide a reasonable general overview of the urban noise circumstances. However, measurement results at individual locations can considerably deviate from E.N.D. data. Numeric values of low-frequency sound level range were found to be generally higher than those of the broad-frequency levels. The results revealed also a strong correlation between measurement-based L50R and NR (Noise Rating) values.


2021 ◽  
Vol 7 (20) ◽  
pp. eabe2405
Author(s):  
Henrik Brumm ◽  
Wolfgang Goymann ◽  
Sébastien Derégnaucourt ◽  
Nicole Geberzahn ◽  
Sue Anne Zollinger

Noise pollution has been linked to learning and language deficits in children, but the causal mechanisms connecting noise to cognitive deficiencies remain unclear because experimental models are lacking. Here, we investigated the effects of noise on birdsong learning, the primary animal model for vocal learning and speech development in humans. We found that traffic noise exposure retarded vocal development and led to learning inaccuracies. In addition, noise suppressed immune function during the sensitive learning period, indicating that it is a potent stressor for birds, which is likely to compromise their cognitive functions. Our results provide important insights into the consequences of noise pollution and pave the way for future studies using birdsong as an experimental model for the investigation of noise-induced learning impairments.


2021 ◽  
Author(s):  
Judith M. Varkevisser ◽  
Ralph Simon ◽  
Ezequiel Mendoza ◽  
Martin How ◽  
Idse van Hijlkema ◽  
...  

AbstractBird song and human speech are learned early in life and for both cases engagement with live social tutors generally leads to better learning outcomes than passive audio-only exposure. Real-world tutor–tutee relations are normally not uni- but multimodal and observations suggest that visual cues related to sound production might enhance vocal learning. We tested this hypothesis by pairing appropriate, colour-realistic, high frame-rate videos of a singing adult male zebra finch tutor with song playbacks and presenting these stimuli to juvenile zebra finches (Taeniopygia guttata). Juveniles exposed to song playbacks combined with video presentation of a singing bird approached the stimulus more often and spent more time close to it than juveniles exposed to audio playback only or audio playback combined with pixelated and time-reversed videos. However, higher engagement with the realistic audio–visual stimuli was not predictive of better song learning. Thus, although multimodality increased stimulus engagement and biologically relevant video content was more salient than colour and movement equivalent videos, the higher engagement with the realistic audio–visual stimuli did not lead to enhanced vocal learning. Whether the lack of three-dimensionality of a video tutor and/or the lack of meaningful social interaction make them less suitable for facilitating song learning than audio–visual exposure to a live tutor remains to be tested.


Akustika ◽  
2019 ◽  
Vol 32 ◽  
pp. 335-345
Author(s):  
Walter Montano

The gas extraction wells are in Amazonian rainforest and by them there are their industrial facilities. The pipeline has about 800 km with four pumps stations and two compressor stations. The challenge of conducting sound measurements was important-there is no specialized literature-and other noise "sources" are howler monkeys, cicadidae chirping, woodpeckers, trees´foliage, etc. However the problem is simply because those fixed industrial facilities are the only ones. People live in isolated hamlet on the side of dirt roads, so they are exposed 24/7 to the continuous noise; at homes 4 km away from the plants the sound level is 60 dBC, but in the spectrum of ILFN tones could not be identified. This Paper presents the procedures that were developed to identify the ILFN tones, improving the methods proposed in ISO 1996-2, writing a software that "automatically eliminates" the sound levels that don´t belong to the industry,


Acoustics ◽  
2019 ◽  
Vol 1 (2) ◽  
pp. 354-368 ◽  
Author(s):  
Linus Ang ◽  
Yong Koh ◽  
Heow Lee

For industrial applications, the scalability of a finalised design is an important factor to consider. The scaling process of typical membrane-type acoustic metamaterials may pose manufacturing challenges such as stress uniformity of the membrane and spatial consistency of the platelet. These challenges could be addressed by plate-type acoustic metamaterials with an internal tonraum resonator. By adopting the concept of modularity in a large-scale design (or meta-panel), the acoustical performance of different specimen configurations could be scaled and modularly combined. This study justifies the viability of two meta-panel configurations for low-frequency (80–500 Hz) noise control. The meta-panels were shown to be superior to two commercially available noise barriers at 80–500 Hz. This superiority was substantiated when the sound transmission class (STC) and the outdoor-indoor transmission class (OITC) were compared. The meta-panels were also shown to provide an average noise reduction of 22.7–27.4 dB at 80–400 Hz when evaluated in different noise environments—traffic noise, aircraft flyby noise, and construction noise. Consequently, the meta-panel may be further developed and optimised to obtain a design that is lightweight and yet has good acoustical performance at below 500 Hz, which is the frequency content of most problematic noises.


Acoustics ◽  
2019 ◽  
Vol 1 (3) ◽  
pp. 590-607 ◽  
Author(s):  
Sanjay Kumar ◽  
Heow Lee

Owing to a steep rise in urban population, there has been a continuous growth in construction of buildings, public or private transport like cars, motorbikes, trains, and planes at a global level. Hence, urban noise has become a major issue affecting the health and quality of human life. In the current environmental scenario, architectural acoustics has been directed towards controlling and manipulating sound waves at a desired level. Structural engineers and designers are moving towards green technologies, which may help improve the overall comfort level of residents. A variety of conventional sound absorbing materials are being used to reduce noise, but attenuation of low-frequency noise still remains a challenge. Recently, acoustic metamaterials that enable low-frequency sound manipulation, mitigation, and control have been widely used for architectural acoustics and traffic noise mitigation. This review article provides an overview of the role of acoustic metamaterials for architectural acoustics and road noise mitigation applications. The current challenges and prominent future directions in the field are also highlighted.


2019 ◽  
Vol 7 (1) ◽  
Author(s):  
Sue Anne Zollinger ◽  
Adriana Dorado-Correa ◽  
Wolfgang Goymann ◽  
Wolfgang Forstmeier ◽  
Ulrich Knief ◽  
...  

Abstract The impact of human activity on the acoustic environment is overwhelming, with anthropogenic noise reaching even remote areas of the planet. The World Health Organization has identified noise pollution as one of the leading environmental health risks in humans, and it has been linked to a myriad of short- and long-term health effects in exposed individuals. However, less is known about the health effects of anthropogenic noise exposure on animals. We investigated long- and short-term effects of traffic noise on zebra finches breeding in small communal aviaries, using a repeated measures design. Birds bred in both noise and no-noise conditions, and we measured baseline plasma glucocorticoid levels before, during and after breeding. In addition, we assayed immune function, measured reproductive success and offspring growth and compared rates of extra-pair paternity of breeding adults. Breeding birds had significantly lower baseline plasma corticosterone levels when exposed to traffic noise than when they were not exposed to noise playback. In addition, the nestlings reared during noise exposure were lighter than nestlings of the same parents when breeding in control conditions. Our results suggest that traffic noise poses a more severe hurdle to birds at more vulnerable stages of their life history, such as during reproductive events and ontogeny. While chronic exposure to traffic noise in our birds did not, by itself, prove to be a sufficient stressor to cause acute effects on health or reproductive success in exposed individuals, it did result in disruptions to normal glucocorticoid profiles and delayed offspring growth. However, animals living in urban habitats are exposed to a multitude of anthropogenic disturbances, and it is likely that even species that appear to be thriving in noisy environments may suffer cumulative effects of these multiple disturbances that may together impact their fitness in urban environments.


Sign in / Sign up

Export Citation Format

Share Document