Adipose Tissue in Multiple Symmetric Lipomatosis Shows Features of Brown: Beige Fat

Author(s):  
Xinhang Dong ◽  
Mingzi Zhang ◽  
Xiaolei Jin
2020 ◽  
Vol 44 (3) ◽  
pp. 855-861 ◽  
Author(s):  
Daniel Schiltz ◽  
Sebastian Tschernitz ◽  
Christine Ortner ◽  
Alexandra Anker ◽  
Silvan Klein ◽  
...  

Multiple symmetric lipomatosis (MSL) is an exceptional disorder of adipose tissue metabolism and lipid storage. The condition was initially scripted by Sir Benjamin Brodie in 1846 and is additionally designated as Made lung’s disease, Launois-Bensaude syndrome or benign symmetric lipomatosis (1). Characteristically, multiple symmetric lipomatosis displays multiple foci of accumulated, non-encapsulated, mature adipose tissue with predominant infiltration within subcutaneous tissue of cephalic, cervical and upper thoracic region. Multiple, non-encapsulated, symmetrically distributed lipomas which spare distal extremities are enunciated in multiple symmetric lipomatosis (1,2). The condition can be misinterpreted as simple obesity on account of identical clinical features and symptoms. Therefore, antecedent evaluation of pertinent manifestations and differentiation of dual entities is necessitated. The disease is presumed to be a condition diverse from accumulation of brown adipose tissue. Histological structure of constituent adipose tissue cells is dystrophic with characteristics akin to lipoma and liposarcoma. The condition may be associated with significant morbidity, metabolic disturbances, neuropathy, malignant metamorphosis and sudden death (1,2).


Biology ◽  
2019 ◽  
Vol 8 (3) ◽  
pp. 57 ◽  
Author(s):  
Kevin J. Phillips

While it is now understood that the proper expansion of adipose tissue is critically important for metabolic homeostasis, it is also appreciated that adipose tissues perform far more functions than simply maintaining energy balance. Adipose tissue performs endocrine functions, secreting hormones or adipokines that affect the regulation of extra-adipose tissues, and, under certain conditions, can also be major contributors to energy expenditure and the systemic metabolic rate via the activation of thermogenesis. Adipose thermogenesis takes place in brown and beige adipocytes. While brown adipocytes have been relatively well studied, the study of beige adipocytes has only recently become an area of considerable exploration. Numerous suggestions have been made that beige adipocytes can elicit beneficial metabolic effects on body weight, insulin sensitivity, and lipid levels. However, the potential impact of beige adipocyte thermogenesis on systemic metabolism is not yet clear and an understanding of beige adipocyte development and regulation is also limited. This review will highlight our current understanding of beige adipocytes and select factors that have been reported to elicit the development and activation of thermogenesis in beige cells, with a focus on factors that may represent a link between exercise and ‘beiging’, as well as the role that thyroid hormone signaling plays in beige adipocyte regulation.


2017 ◽  
Vol 114 (20) ◽  
pp. 5265-5270 ◽  
Author(s):  
Delphine Duteil ◽  
Milica Tosic ◽  
Dominica Willmann ◽  
Anastasia Georgiadi ◽  
Toufike Kanouni ◽  
...  

Aging is accompanied by major changes in adipose tissue distribution and function. In particular, with time, thermogenic-competent beige adipocytes progressively gain a white adipocyte morphology. However, the mechanisms controlling the age-related transition of beige adipocytes to white adipocytes remain unclear. Lysine-specific demethylase 1 (Lsd1) is an epigenetic eraser enzyme positively regulating differentiation and function of adipocytes. Here we show that Lsd1 levels decrease in aging inguinal white adipose tissue concomitantly with beige fat cell decline. Accordingly, adipocyte-specific increase of Lsd1 expression is sufficient to rescue the age-related transition of beige adipocytes to white adipocytes in vivo, whereas loss of Lsd1 precipitates it. Lsd1 maintains beige adipocytes by controlling the expression of peroxisome proliferator-activated receptor α (Ppara), and treatment with a Ppara agonist is sufficient to rescue the loss of beige adipocytes caused by Lsd1 ablation. In summary, our data provide insights into the mechanism controlling the age-related beige-to-white adipocyte transition and identify Lsd1 as a regulator of beige fat cell maintenance.


Nutrients ◽  
2019 ◽  
Vol 11 (9) ◽  
pp. 2164 ◽  
Author(s):  
Woo Yong Park ◽  
Seong-Kyu Choe ◽  
Jinbong Park ◽  
Jae-Young Um

The alteration of white adipose tissue (WAT) “browning”, a change of white into beige fat, has been considered as a new therapeutic strategy to treat obesity. In this study, we investigated the browning effect of black raspberry (Rubus coreanus Miquel) using in vitro and in vivo models. Black raspberry water extract (BRWE) treatment inhibited lipid accumulation in human mesenchymal stem cells (hMSCs) and zebrafish. To evaluate the thermogenic activity, BRWE was orally administered for 2 weeks, and then, the mice were placed in a 4 °C environment. As a result, BRWE treatment increased rectal temperature and inguinal WAT (iWAT) thermogenesis by inducing the expression of beige fat specific markers such as PR domain zinc-finger protein 16 (PRDM16), uncoupling protein 1 (UCP1), peroxisome proliferator-activated receptor gamma coactivator 1-alpha (PGC1α), and t-box protein 1 (TBX1) in cold-exposed mice. Furthermore, ellagic acid (EA), a constituent of BRWE, markedly promoted beige specific markers: UCP1, PGC1α, TBX1, and nuclear respiratory factor 1 in beige differentiation media (DM)-induced 3T3-L1 adipocytes. Our findings indicate that BRWE can promote beige differentiation/activation, and EA is the active compound responsible for such effect. Thus, we suggest the nature-derived agents BRWE and EA as potential agents for obesity treatment.


Author(s):  
Shailendra P. Singh ◽  
Ilana Grant ◽  
Aliza Meissner ◽  
Attallah Kappas ◽  
Nader G. Abraham

AbstractBackgroundHmox1 plays an important role in the regulation of mitochondrial bioenergetics and function by regulating cellular heme-derived CO and bilirubin. Previous studies have demonstrated that global disruption of HO-1 in humans and mice resulted in severe organ dysfunction.MethodsWe investigated the potential role of adipose-specific-HO-1 genetic ablation on adipose tissue function, mitochondrial quality control and energy expenditure by generating an adipo-HO-1 knockout mouse model (Adipo-HO-1ResultsAdipo-HO-1ConclusionAblation of adipose tissue-HO-1 abridged PGC1 expression promoted mitochondrial dysfunction and contributed to an increase of pro-inflammatory visceral fat and abrogated beige-cell like phenotype.


F1000Research ◽  
2018 ◽  
Vol 7 ◽  
pp. 1129 ◽  
Author(s):  
Michael E. Symonds ◽  
Peter Aldiss ◽  
Mark Pope ◽  
Helen Budge

Brown adipose tissue (BAT) possesses a unique uncoupling protein (UCP1) which, when activated, enables the rapid generation of heat and the oxidation of lipids or glucose or both. It is present in small amounts (~15–350 mL) in adult humans. UCP1 is rapidly activated at birth and is essential in preventing hypothermia in newborns, who rapidly generate large amounts of heat through non-shivering thermogenesis. Since the “re-discovery” of BAT in adult humans about 10 years ago, there has been an exceptional amount of research interest. This has been accompanied by the establishment of beige fat, characterised as discrete areas of UCP1-containing cells dispersed within white adipocytes. Typically, the amount of UCP1 in these depots is around 10% of the amount found in classic BAT. The abundance of brown/beige fat is reduced with obesity, and the challenge is to prevent its loss with ageing or to reactivate existing depots or both. This is difficult, as the current gold standard for assessing BAT function in humans measures radio-labelled glucose uptake in the fasted state and is usually dependent on cold exposure and the same subject can be found to exhibit both positive and negative scans with repeated scanning. Rodent studies have identified multiple pathways that may modulate brown/beige fat function, but their direct relevance to humans is constrained, as these studies typically are undertaken in cool-adapted animals. BAT remains a challenging organ to study in humans and is able to swiftly adapt to changes in the thermal environment and thus enable rapid changes in heat production and glucose oxidation.


1983 ◽  
Vol 5 (2-3) ◽  
pp. 145-152 ◽  
Author(s):  
Saverio Cinti ◽  
Giuliano Enzi ◽  
Massimo Cigolini ◽  
Ottavio Bosello

2020 ◽  
Vol 12 (2) ◽  
pp. 85-101
Author(s):  
Anna Meiliana ◽  
Nurrani Mustika Dewi ◽  
Andi Wijaya

BACKGROUND: Obesity has been decades become a highly interest study, accompanied by the realization that adipose tissue (AT) plays a major role in the regulation of metabolic function.CONTENT: In past few years, adipocytes classification, development, and differentiation has been significant changes. The white adipose tissue (WAT) can transform to a phenotype like brown adipose (BAT) type and function. Exercise and cold induction were the most common factor for fat browning; however batokines such as fibroblast growth factor (FGF)-21, interleukin (IL)-6, Slit homolog 2 protein (SLIT2)-C, and Meteorin-like protein (METRNL) perform a beneficial browning action by increasing peroxisome proliferator-activated receptor gamma coactivator (PGC)-1α protein levels, a key factor to stimulate mitochondrial biogenesis and uncoupling Protein 1 (UCP1) transcription, thus change the WAT phenotype into beige.SUMMARY: AT recently known as a complex organ, not only bearing a storage function but as well as the master regulator of energy balance and nutritional homeostasis; brown and beige fat express constitutively high levels of thermogenic genes and raise our expectation on new strategies for fighting obesity and metabolic disorders.KEYWORDS: obesity, white adipose tissue, brown adipose tissue, beige adipose tissue, inflammation, IR, metabolic disease


Sign in / Sign up

Export Citation Format

Share Document