Induction of myeloma-specific cytotoxic T lymphocytes ex vivo by CD40-activated B cells loaded with myeloma tumor antigens

2009 ◽  
Vol 88 (11) ◽  
pp. 1113-1123 ◽  
Author(s):  
Sang-Ki Kim ◽  
Thanh-Nhan Nguyen Pham ◽  
Tuyet Minh Nguyen Hoang ◽  
Hyun-Kyu Kang ◽  
Chun-Ji Jin ◽  
...  
Blood ◽  
2014 ◽  
Vol 124 (21) ◽  
pp. 3838-3838
Author(s):  
Sun Ok Yun ◽  
Hee Young Ju ◽  
Che Ry Hong ◽  
Ji Won Lee ◽  
Hyery Kim ◽  
...  

Abstract Dendritic cells (DCs) are well known as the most potent professional antigen presenting cells (APCs). Nonetheless, the use of these cells in immunotherapy has been limited due to the time consuming and laborious steps required to generate DCs from monocytes in vitro. Therefore, alternative APCs has drawn much attention because of their relative convenience in manipulation. In this study, the efficacy of B cells as APCs, as compared to DCs, in induction of cytotoxic T lymphocytes (CTLs) against cytomegalovirus (CMV)-specific antigens was evaluated. B cells were isolated by depletion of peripheral blood mononuclear cell (PBMCs) from healthy individuals with MACS system, loaded with α-galactosylceramide (α-GalCer) for inducing B cell activation, and nucleofected with CMV-antigen coding plasmid DNA, pCK-pp65-IRES-IE1. As other APCs, monocyte-derived DCs were induced with various cytokines (GM-CSF, IL-4, IL-1b, TNF-a), for 6 days and nucleofected with the same plasmid DNA. Ag-nucleofected B cells or DCs were cocultured with T cells for 14 days in vitro. The cells were harvested and subsequently immunoassayed. Proliferation of cells was more expanded by about 25~32% in CMV-CTLs induced by DCs compared to of B cells, but there was no significant difference in immunogenicity between CMV-CTLs induced with B cells and DCs. Compared to CMV-CTLs induced by DCs, the CTLs induced by α-GalCer-loaded B cells induced similar cytotoxicity against CMV antigen (Ag) in vitro. The CMV-CTLs by α-GalCer-loaded B cells recognized CMV antigen pp65 (median 88 SFC/105) and IE-1 (median 86 SFC/105) in donor 1, and CMV antigen pp65 (median 31 SFC/105) and IE-1 (median 37 SFC/105) in donor 2. Similarly, the CMV-CTLs by DCs recognized CMV antigen pp65 (median 133 SFC/105) and IE-1 (median 32 SFC/105) in donor 1, and CMV antigen pp65 (median 37 SFC/105) and IE-1 (median 43 SFC/105) in donor 2. Immunogenicities of both CTLs were similar not only on IFN-γ ELISPOT (Enzyme-linked immunospot) assay but also on cytotoxicity assay. The CMV-CTLs by α-GalCer-loaded B cells have killing activity against CMV antigen pp65 (100%, at E:T ratio 10:1) and IE1 (85%, at E:T ratio 10:1) in donor 1, and CMV antigen pp65 (69%, at E:T ratio 10:1) and IE1 (27%, at E:T ratio 10:1) in donor 2. Also, the CMV-CTLs by DCs show killing activity against CMV antigen pp65 (100%, at E:T ratio 10:1) and IE1 (42%, at E:T ratio 10:1) in donor 1, and CMV antigen pp65 (88%, at E:T ratio 10:1) and IE1 (64%, at E:T ratio 10:1) in donor 2. These observations suggest that α-GalCer-loaded B cells could be used in general as APCs instead of DCs. Using the B cells as APCs have several benefits such as cost-effectiveness, less time-consuming, and less laborious compared to when DCs are used. Furthermore, nucleofection technique might be useful in delivering antigen-coding DNA, not only for virus antigens but also for tumor antigens, directly into the nucleus. Our results demonstrate that α-GalCer-loaded B cells could be potent APCs in generating antigen-specific CTLs for cellular vaccines and adoptive immunotherapy. Acknowledgment: This work was supported by the National Research Foundation of Korea (NRF) grant funded by the Korea government (MEST) (No. 2012R1A1A2008316) and we thank Ann M. Leen, Helen E. Heslop and Malcomn K. Brenner from Center for Cell and Gene Therapy, Baylor College of Medicine Center for their kind help. Disclosures No relevant conflicts of interest to declare.


Cytotherapy ◽  
2017 ◽  
Vol 19 (1) ◽  
pp. 119-127
Author(s):  
Sun Ok Yun ◽  
Hee Young Shin ◽  
Chang-Yuil Kang ◽  
Hyoung Jin Kang

Cytotherapy ◽  
2019 ◽  
Vol 21 (5) ◽  
pp. S32
Author(s):  
S. Yun ◽  
K. Baek ◽  
H. Shin ◽  
H. Kang

2011 ◽  
Vol 2011 ◽  
pp. 1-10 ◽  
Author(s):  
Jia-Ming Chang ◽  
Le-Mei Hung ◽  
Yau-Jan Chyan ◽  
Chun-Ming Cheng ◽  
Rey-Yuh Wu

Carthamus tinctorius(CT), also named safflower, is a traditional Chinese medicine widely used to improve blood circulation. CT also has been studied for its antitumor activity in certain cancers. To investigate the effects of CT on the dendritic cell (DC)-based vaccine in cancer treatment, cytokine secretion of mouse splenic T lymphocytes and the maturation of DCs in response to CT were analyzed. To assess the antitumor activity of CT extract on mouse CD117+(c-kit)-derived DCs pulsed with JC mammal tumor antigens, the JC tumor was challenged by the CT-treated DC vaccinein vivo. CT stimulated IFN-γand IL-10 secretion of splenic T lymphocytes and enhanced the maturation of DCs by enhancing immunological molecule expression. When DC vaccine was pulsed with tumor antigens along with CT extract, the levels of TNF-αand IL-1βwere dramatically increased with a dose-dependent response and more immunologic and co-stimulatory molecules were expressed on the DC surface. In addition, CT-treated tumor lysate-pulsed DC vaccine reduced the tumor weight in tumor-bearing mice by 15.3% more than tumor lysate-pulsed DC vaccine without CT treatment. CT polarized cytokine secretion toward the Th1 pathway and also increased the population of cytotoxic T lymphocytesex vivo. In conclusion, CT activates DCs might promote the recognition of antigens and facilitate antigen presentation to Th1 immune responses.


2003 ◽  
Vol 31 (11) ◽  
pp. 1031-1038 ◽  
Author(s):  
Daniela Montagna ◽  
Rita Maccario ◽  
Enrica Montini ◽  
Roberto Tonelli ◽  
Daniela Lisini ◽  
...  

Cytotherapy ◽  
2012 ◽  
Vol 14 (1) ◽  
pp. 80-90 ◽  
Author(s):  
Daniela Montagna ◽  
Ilaria Turin ◽  
Roberta Schiavo ◽  
Enrica Montini ◽  
Nadia Zaffaroni ◽  
...  

2018 ◽  
Vol 19 (12) ◽  
pp. 3793 ◽  
Author(s):  
Mathieu Césaire ◽  
Juliette Thariat ◽  
Serge M. Candéias ◽  
Dinu Stefan ◽  
Yannick Saintigny ◽  
...  

Immunotherapy has revolutionized the practice of oncology, improving survival in certain groups of patients with cancer. Immunotherapy can synergize with radiation therapy, increase locoregional control, and have abscopal effects. Combining it with other treatments, such as targeted therapies, is a promising means of improving the efficacy of immunotherapy. Because the value of immunotherapy is amplified with the expression of tumor antigens, coupling poly(ADP-ribose) polymerase (PARP) inhibitors and immunotherapy might be a promising treatment for cancer. Further, PARP inhibitors (PARPis) are being combined with radiation therapy to inhibit DNA repair functions, thus enhancing the effects of radiation; this association might interact with the antitumor immune response. Cytotoxic T lymphocytes are central to the antitumor immune response. PARP inhibitors and ionizing radiation can enhance the infiltration of cytotoxic T lymphocytes into the tumor bed, but they can also enhance PD-1/PDL-1 expression. Thus, the addition of immune checkpoint inhibitors with PARP inhibitors and/or ionizing radiation could counterbalance such immunosuppressive effects. With the present review article, we proposed to evaluate some of these associated therapies, and we explored the biological mechanisms and medical benefits of the potential combination of radiation therapy, immunotherapy, and PARP inhibitors.


1998 ◽  
Vol 188 (6) ◽  
pp. 1203-1208 ◽  
Author(s):  
Graham S. Ogg ◽  
P. Rod Dunbar ◽  
Pedro Romero ◽  
Ji-Li Chen ◽  
Vincenzo Cerundolo

Vitiligo is an autoimmune condition characterized by loss of epidermal melanocytes. Using tetrameric complexes of human histocompatibility leukocyte antigen (HLA) class I to identify antigen-specific T cells ex vivo, we observed high frequencies of circulating MelanA-specific, A*0201-restricted cytotoxic T lymphocytes (A2–MelanA tetramer+ CTLs) in seven of nine HLA-A*0201–positive individuals with vitiligo. Isolated A2–MelanA tetramer+ CTLs were able to lyse A*0201-matched melanoma cells in vitro and their frequency ex vivo correlated with extent of disease. In contrast, no A2–MelanA tetramer+ CTL could be identified ex vivo in all four A*0201-negative vitiligo patients or five of six A*0201-positive asymptomatic controls. Finally, we observed that the A2–MelanA tetramer+ CTLs isolated from vitiligo patients expressed high levels of the skin homing receptor, cutaneous lymphocyte-associated antigen, which was absent from the CTLs seen in the single A*0201-positive normal control. These data are consistent with a role of skin-homing autoreactive melanocyte-specific CTLs in causing the destruction of melanocytes seen in autoimmune vitiligo. Lack of homing receptors on the surface of autoreactive CTLs could be a mechanism to control peripheral tolerance in vivo.


Sign in / Sign up

Export Citation Format

Share Document