scholarly journals Combining PARP inhibition, radiation, and immunotherapy: A possible strategy to improve the treatment of cancer?

2018 ◽  
Vol 19 (12) ◽  
pp. 3793 ◽  
Author(s):  
Mathieu Césaire ◽  
Juliette Thariat ◽  
Serge M. Candéias ◽  
Dinu Stefan ◽  
Yannick Saintigny ◽  
...  

Immunotherapy has revolutionized the practice of oncology, improving survival in certain groups of patients with cancer. Immunotherapy can synergize with radiation therapy, increase locoregional control, and have abscopal effects. Combining it with other treatments, such as targeted therapies, is a promising means of improving the efficacy of immunotherapy. Because the value of immunotherapy is amplified with the expression of tumor antigens, coupling poly(ADP-ribose) polymerase (PARP) inhibitors and immunotherapy might be a promising treatment for cancer. Further, PARP inhibitors (PARPis) are being combined with radiation therapy to inhibit DNA repair functions, thus enhancing the effects of radiation; this association might interact with the antitumor immune response. Cytotoxic T lymphocytes are central to the antitumor immune response. PARP inhibitors and ionizing radiation can enhance the infiltration of cytotoxic T lymphocytes into the tumor bed, but they can also enhance PD-1/PDL-1 expression. Thus, the addition of immune checkpoint inhibitors with PARP inhibitors and/or ionizing radiation could counterbalance such immunosuppressive effects. With the present review article, we proposed to evaluate some of these associated therapies, and we explored the biological mechanisms and medical benefits of the potential combination of radiation therapy, immunotherapy, and PARP inhibitors.

Cancers ◽  
2022 ◽  
Vol 14 (2) ◽  
pp. 294
Author(s):  
Ching-Hung Hsieh ◽  
Cheng-Zhe Jian ◽  
Liang-In Lin ◽  
Guan-Sian Low ◽  
Ping-Yun Ou ◽  
...  

Immune checkpoint inhibitors (ICIs), including antibodies that target programmed cell death protein 1 (PD-1), programmed death-ligand 1 (PD-L1), or cytotoxic T lymphocyte antigen 4 (CTLA4), represent some of the most important breakthroughs in new drug development for oncology therapy from the past decade. CXC chemokine ligand 13 (CXCL13) exclusively binds CXC chemokine receptor type 5 (CXCR5), which plays a critical role in immune cell recruitment and activation and the regulation of the adaptive immune response. CXCL13 is a key molecular determinant of the formation of tertiary lymphoid structures (TLSs), which are organized aggregates of T, B, and dendritic cells that participate in the adaptive antitumor immune response. CXCL13 may also serve as a prognostic and predictive factor, and the role played by CXCL13 in some ICI-responsive tumor types has gained intense interest. This review discusses how CXCL13/CXCR5 signaling modulates cancer and immune cells to promote lymphocyte infiltration, activation by tumor antigens, and differentiation to increase the antitumor immune response. We also summarize recent preclinical and clinical evidence regarding the ICI-therapeutic implications of targeting the CXCL13/CXCR5 axis and discuss the potential role of this signaling pathway in cancer immunotherapy.


Pathobiology ◽  
2021 ◽  
pp. 1-17
Author(s):  
Ana Margarida Barbosa ◽  
Alexandra Gomes-Gonçalves ◽  
António G. Castro ◽  
Egídio Torrado

The immune system plays a critical role in preventing cancer development and progression. However, the complex network of cells and soluble factor that form the tumor microenvironment (TME) can dictate the differentiation of tumor-infiltrating leukocytes and shift the antitumor immune response into promoting tumor growth. With the advent of cancer immunotherapy, there has been a reinvigorated interest in defining how the TME shapes the antitumor immune response. This interest brought to light the microbiome as a novel player in shaping cancer immunosurveillance. Indeed, accumulating evidence now suggests that the microbiome may confer susceptibility or resistance to certain cancers and may influence response to therapeutics, particularly immune checkpoint inhibitors. As we move forward into the age of precision medicine, it is vital that we define the factors that influence the interplay between the triad immune system-microbiota-cancer. This knowledge will contribute to improve the therapeutic response to current approaches and will unravel novel targets for immunotherapy.


2019 ◽  
Vol 859 ◽  
pp. 172538 ◽  
Author(s):  
Gullanki Naga Venkata Charan Tej ◽  
Kaushik Neogi ◽  
Sumit Singh Verma ◽  
Subash Chandra Gupta ◽  
Prasanta Kumar Nayak

Breast Care ◽  
2020 ◽  
Vol 15 (5) ◽  
pp. 443-449
Author(s):  
Hans-Christian Kolberg ◽  
Oliver Hoffmann ◽  
René Baumann

Background: The term “abscopal effect” was defined in 1953. In oncology the term is used to describe systemic antitumor effects triggered by local irradiation (nontarget effect). Although the mechanism of the abscopal effect is not completely understood yet, it has been demonstrated that in situ tumor vaccination, and the resulting antitumor immune response, is one of the key factors. Summary: The development of immune therapies has recently led to concepts combining local radiotherapy and immune therapy with the aim of enhancing the response to immune therapy by the immunological mechanisms summarized in the term abscopal effect. This concept has also been investigated in less immunogenic tumors such as breast cancer. Initial data are promising but the hypothesis that the combination of checkpoint inhibitors and local radiotherapy could be an effective combination in breast cancer has to be proven by ongoing trials. Substitution of local radiotherapy by local hyperthermia could be an option in selected cases. Key Messages: Combination of checkpoint inhibitors with local radiation or hyperthermia in breast cancer is a promising approach and could enhance the response rates generated by immune therapy alone through the antitumor immune response initiated by the abscopal effect.


2020 ◽  
Vol 21 (18) ◽  
pp. 6586
Author(s):  
Rihab Nasr ◽  
Ali Shamseddine ◽  
Deborah Mukherji ◽  
Farah Nassar ◽  
Sally Temraz

Gastric cancer is the end result of a complex interplay between host genetics, environmental factors, and microbial factors. The link between gut microbiome and gastric cancer has been attributed to persistent activation of the host’s immune system by gut microbiota. The end result of this dysregulated interaction between host epithelium and microbes is a state of chronic inflammation. Gut bacteria can promote anti-tumor immune responses through several mechanisms. These include triggering T-cell responses to bacterial antigens that can cross-react with tumor antigens or cause tumor-specific antigen recognition; engagement of pattern recognition receptors that mediate pro-immune or anti-inflammatory effects or via small metabolites that mediate systemic effects on the host. Here we review the role of the gut microbiome including H. pylori and non-H. pylori gastric bacteria, the immune response, and immunotherapy using checkpoint inhibitors. We also review the evidence for cross talk between the gut microbiome and immune response in gastric cancer.


2019 ◽  
Vol 30 (7) ◽  
pp. 2049-2059 ◽  
Author(s):  
Neha Nandedkar-Kulkarni ◽  
Abhishek R. Vartak ◽  
Steven J. Sucheck ◽  
Katherine A. Wall ◽  
Anthony Quinn ◽  
...  

2020 ◽  
Author(s):  
Joost Beltman ◽  
Richard Beck ◽  
Bettina Weigelin

Several immunotherapeutic strategies for the treatment of cancer are under development. Two prominent strategies are adoptive cell transfer (ACT) of cytotoxic T lymphocytes (CTLs) and modulation of CTL function with immune checkpoint inhibitors or with costimulatory antibodies. Despite some success with these approaches, there remains a lack of detailed and quantitative descriptions of the events following CTL transfer and the impact of immunomodulation. Here, we have applied ordinary differential equation models to two photon imaging data derived from a B16F10 murine melanoma. Models were parameterised with data from two different treatment conditions: either ACT-only, or ACT with intratumoural costimulation using a CD137 targeted antibody. Model dynamics and best fitting parameters were compared, in order to assess the mode of action of the CTLs and examine how the CD137 antibody influenced their activities. We found that the cytolytic activity of the transferred CTLs was minimal without CD137 costimulation, and that the CD137 targeted antibody did not enhance the per-capita killing ability of the transferred CTLs. Instead, the results of our modelling study suggest that an antiproliferative effect of CTLs exerted upon the tumour likely accounted for the majority of the reduction in tumour growth after CTL transfer. We found that CD137 most likely improved tumour control via enhancement of this antiproliferative effect, as well as prolonging the period in which CTLs were inside the tumour, leading to a sustained duration of their antitumour effects following CD137 stimulation.


Sign in / Sign up

Export Citation Format

Share Document