Heterologous Expression of the Carrot Hsp17.7 gene Increased Growth, Cell Viability, and Protein Solubility in Transformed Yeast (Saccharomyces cerevisiae) under Heat, Cold, Acid, and Osmotic Stress Conditions

2017 ◽  
Vol 74 (8) ◽  
pp. 952-960 ◽  
Author(s):  
Eunhye Ko ◽  
Minhye Kim ◽  
Yunho Park ◽  
Yeh-Jin Ahn
2020 ◽  
Vol 20 (3) ◽  
Author(s):  
Jorg C de Ruijter ◽  
Kiyohiko Igarashi ◽  
Merja Penttilä

ABSTRACT Processed lignocellulosic biomass is a source of mixed sugars that can be used for microbial fermentation into fuels or higher value products, like chemicals. Previously, the yeast Saccharomyces cerevisiae was engineered to utilize its cellodextrins through the heterologous expression of sugar transporters together with an intracellular expressed β-glucosidase. In this study, we screened a selection of eight (putative) cellodextrin transporters from different yeast and fungal hosts in order to extend the catalogue of available cellobiose transporters for cellobiose fermentation in S. cerevisiae. We confirmed that several in silico predicted cellodextrin transporters from Aspergillus niger were capable of transporting cellobiose with low affinity. In addition, we found a novel cellobiose transporter from the yeast Lipomyces starkeyi, encoded by the gene Ls120451. This transporter allowed efficient growth on cellobiose, while it also grew on glucose and lactose, but not cellotriose nor cellotetraose. We characterized the transporter more in-depth together with the transporter CdtG from Penicillium oxalicum. CdtG showed to be slightly more efficient in cellobiose consumption than Ls120451 at concentrations below 1.0 g/L. Ls120451 was more efficient in cellobiose consumption at higher concentrations and strains expressing this transporter grew slightly slower, but produced up to 30% more ethanol than CdtG.


1993 ◽  
Vol 290 (2) ◽  
pp. 369-374 ◽  
Author(s):  
S Mandrup ◽  
R Jepsen ◽  
H Skøtt ◽  
J Rosendal ◽  
P Højrup ◽  
...  

We have expressed a bovine synthetic acyl-CoA-binding protein (ACBP) gene in yeast (Saccharomyces cerevisiae) under the control of the GAL1 promoter. The heterologously expressed bovine ACBP constituted up to 6.4% of total cellular protein and the processing was identical with that of native bovine ACBP, i.e. the initiating methionine was removed and the following serine residue was N-acetylated. The expression of this protein did not affect the growth rate of the cells. Determination of the yeast acyl-CoA pool size showed a close positive correlation between the ACBP content of the cells and the size of the acyl-CoA pool. Thus ACBP can act as an intracellular acyl-CoA pool former. Possible physiological functions of ACBP in cells are discussed.


HortScience ◽  
2012 ◽  
Vol 47 (1) ◽  
pp. 143-148 ◽  
Author(s):  
Yeh-Jin Ahn ◽  
Na-Hyun Song

The expression and function of DcHsp17.7, a small heat shock protein expressed in carrot (Daucus carota L.), was examined under oxidative and osmotic stress conditions. Comparative analysis revealed that DcHsp17.7 is a cytosolic Class I protein. Sequence alignment showed that DcHsp17.7 has the characteristic α-crystalline domain-containing consensus regions I and II. Under oxidative [hydrogen peroxide (H2O2)] and osmotic (polyethylene glycol) stress conditions, DcHsp17.7 accumulated in carrot leaf tissue. To examine its function under these abiotic stress conditions, the coding sequence of DcHsp17.7 was introduced into Escherichia coli and expressed by isopropyl β-D-1-thiogalactopyranoside treatment. Under both oxidative and osmotic stress conditions, heterologously expressed DcHsp17.7 enhanced bacterial cell viability. The expression level of soluble proteins was higher in transgenic cells expressing DcHsp17.7 when compared with controls under these stress conditions. These results suggest that DcHsp17.7 confers tolerance to both oxidative and osmotic stresses and thereby functions as a molecular chaperone during the stresses examined.


2017 ◽  
Vol 474 (7) ◽  
pp. 1175-1193 ◽  
Author(s):  
Rachel Gergondey ◽  
Camille Garcia ◽  
Christophe H. Marchand ◽  
Stephane D. Lemaire ◽  
Jean-Michel Camadro ◽  
...  

The potential biological consequences of oxidative stress and changes in glutathione levels include the oxidation of susceptible protein thiols and reversible covalent binding of glutathione to the –SH groups of proteins by S-glutathionylation. Mitochondria are central to the response to oxidative stress and redox signaling. It is therefore crucial to explore the adaptive response to changes in thiol-dependent redox status in these organelles. We optimized the purification protocol of glutathionylated proteins in the yeast Saccharomyces cerevisiae and present a detailed proteomic analysis of the targets of protein glutathionylation in cells undergoing constitutive metabolism and after exposure to various stress conditions. This work establishes the physiological importance of the glutathionylation process in S. cerevisiae under basal conditions and provides evidence for an atypical and unexpected cellular distribution of the process between the cytosol and mitochondria. In addition, our data indicate that each oxidative condition (diamide, GSSG, H2O2, or the presence of iron) elicits an adaptive metabolic response affecting specific mitochondrial metabolic pathways, mainly involved in the energetic maintenance of the cells. The correlation of protein modifications with intracellular glutathione levels suggests that protein deglutathionylation may play a role in protecting mitochondria from oxidative stress. This work provides further insights into the diversity of proteins undergoing glutathionylation and the role of this post-translational modification as a regulatory process in the adaptive response of the cell.


2006 ◽  
Vol 17 (1) ◽  
pp. 213-226 ◽  
Author(s):  
Cory D. Dunn ◽  
Marina S. Lee ◽  
Forrest A. Spencer ◽  
Robert E. Jensen

Unlike many other organisms, the yeast Saccharomyces cerevisiae can tolerate the loss of mitochondrial DNA (mtDNA). Although a few proteins have been identified that are required for yeast cell viability without mtDNA, the mechanism of mtDNA-independent growth is not completely understood. To probe the relationship between the mitochondrial genome and cell viability, we conducted a microarray-based, genomewide screen for mitochondrial DNA-dependent yeast mutants. Among the several genes that we discovered is MGR1, which encodes a novel subunit of the i-AAA protease complex located in the mitochondrial inner membrane. mgr1Δ mutants retain some i-AAA protease activity, yet mitochondria lacking Mgr1p contain a misassembled i-AAA protease and are defective for turnover of mitochondrial inner membrane proteins. Our results highlight the importance of the i-AAA complex and proteolysis at the inner membrane in cells lacking mitochondrial DNA.


Sign in / Sign up

Export Citation Format

Share Document