3-Hydroxy-3-methylglutaryl-CoA reductase gene of Gibberella fujikuroi: isolation and characterization

1997 ◽  
Vol 31 (1) ◽  
pp. 38-47 ◽  
Author(s):  
Solveig Woitek ◽  
Shiela E. Unkles ◽  
James R. Kinghorn ◽  
B. Tudzynski
2002 ◽  
Vol 159 (4) ◽  
pp. 415-422 ◽  
Author(s):  
Russell McInnes ◽  
Angela Lidgett ◽  
Damian Lynch ◽  
Helen Huxley ◽  
Elizabeth Jones ◽  
...  

Planta Medica ◽  
2009 ◽  
Vol 75 (13) ◽  
pp. 1453-1458 ◽  
Author(s):  
Samina Aquil ◽  
Amjad Husaini ◽  
Malik Abdin ◽  
Gulam Rather

2002 ◽  
Vol 97 (2) ◽  
pp. 135-146 ◽  
Author(s):  
Teresa Ayora-Talavera ◽  
Joseph Chappell ◽  
Edmundo Lozoya-Gloria ◽  
Victor M Loyola-Vargas

1997 ◽  
Vol 324 (2) ◽  
pp. 619-626 ◽  
Author(s):  
Javier PEÑA-DÍAZ ◽  
Andrea MONTALVETTI ◽  
Ana CAMACHO ◽  
Claribel GALLEGO ◽  
Luis M. RUIZ-PEREZ ◽  
...  

We report the isolation and characterization of a genomic clone containing the open reading frame sequence for 3-hydroxy-3-methylglutaryl-CoA (HMG-CoA) reductase from Trypanosoma cruzi, the causative agent of Chagas' disease. The protozoan gene encoded for a smaller polypeptide than the rest of the genes described from eukaryotic organisms and the deduced amino acid sequence could be aligned with the C-terminal half of animal and plant reductases exhibiting pronounced similarity to other eukaryotic counterparts. Further examination of the 5′ flanking region by cDNA analysis and establishment of the splice acceptor sites clearly indicated that the corresponding mRNA apparently lacks sequences encoding a membrane N-terminal domain. The reductase gene is a single copy and is located on a chromosome of 1.36 Mb as determined by contour-clamped homogeneous electric field electrophoresis. The overall cellular distribution of enzymic activity was investigated after differential centrifugation of Trypanosoma cell extracts. Reductase activity was primarily associated with the cellular soluble fraction because 95% of the total cellular activity was recovered in the supernatant and was particularly sensitive to proteolytic inactivation. Furthermore the enzyme can be efficiently overexpressed in a highly active form by using the expression vector pET-11c. Thus Trypanosoma cruziHMG-CoA reductase is unique in the sense that it totally lacks the membrane-spanning sequences present in all eukaryotic HMG-CoA reductases so far characterized.


1999 ◽  
Vol 13 (8) ◽  
pp. 1225-1236 ◽  
Author(s):  
Luciano Di Croce ◽  
Guillermo P. Vicent ◽  
Adali Pecci ◽  
Giovannella Bruscalupi ◽  
Anna Trentalance ◽  
...  

Abstract The isoprenoid metabolic pathway is mainly regulated at the level of conversion of 3-hydroxy-3-methylglutaryl coenzyme A (HMG CoA) to mevalonate, catalyzed by HMG CoA reductase. As estrogens are known to influence cholesterol metabolism, we have explored the potential regulation of the HMG CoA reductase gene promoter by estrogens. The promoter contains an estrogen-responsive element-like sequence at position −93 (termed Red-ERE), which differs from the ERE consensus by one mismatch in each half of the palindrome. A Red-ERE oligonucleotide specifically bound estrogen receptor in vitro and conferred receptor-dependent estrogen responsiveness to a heterologous promoter in all cell lines tested. However, expression of a reporter driven by the rat HMG CoA reductase promoter was induced by estrogen treatment after transient transfection into the breast cancer cell line MCF-7 cells but not in hepatic cell lines expressing estrogen receptor. Estrogen induction in MCF-7 cells was dependent on the Red-ERE and was strongly inhibited by the antiestrogen ICI 164,384. A functional cAMP-responsive element is located immediately upstream of the Red-ERE, but cAMP and estrogens inhibit each other in terms of transactivation of the promoter. Similarly, induction by estrogens was inhibited by micromolar concentrations of cholesterol, likely acting via changes in occupancy of the sterol-responsive element located 70 bp upstream of the Red-ERE. Thus, within its natural context, Red-ERE is able to mediate hormonal regulation of the HMG CoA reductase gene in tissues that respond to estrogens with enhanced cell proliferation, while it is not operative in liver cells. We postulate that this tissue-specific regulation of HMG CoA reductase by estrogens could partially explain the protective effect of estrogens against heart disease.


Sign in / Sign up

Export Citation Format

Share Document