Three-dimensional magnetic resonance spectroscopic imaging in the substantia nigra of healthy controls and patients with Parkinson’s disease

2011 ◽  
Vol 21 (9) ◽  
pp. 1962-1969 ◽  
Author(s):  
Adriane Gröger ◽  
Grzegorz Chadzynski ◽  
Jana Godau ◽  
Daniela Berg ◽  
Uwe Klose
2021 ◽  
Vol 10 (2) ◽  
pp. 205846012098809
Author(s):  
Byeong H Oh ◽  
Hyeong C Moon ◽  
Aryun Kim ◽  
Hyeon J Kim ◽  
Chae J Cheong ◽  
...  

Background The pathology of Parkinson’s disease leads to morphological changes in brain structure. Currently, the progressive changes in gray matter volume that occur with time and are specific to patients with Parkinson’s disease, compared to healthy controls, remain unclear. High-tesla magnetic resonance imaging might be useful in differentiating neurological disorders by brain cortical changes. Purpose We aimed to investigate patterns in gray matter changes in patients with Parkinson’s disease by using an automated segmentation method with 7-tesla magnetic resonance imaging. Material and Methods High-resolution T1-weighted 7 tesla magnetic resonance imaging volumes of 24 hemispheres were acquired from 12 Parkinson’s disease patients and 12 age- and sex-matched healthy controls with median ages of 64.5 (range, 41–82) years and 60.5 (range, 25–74) years, respectively. Subgroup analysis was performed according to whether axial motor symptoms were present in the Parkinson’s disease patients. Cortical volume, cortical thickness, and subcortical volume were measured using a high-resolution image processing technique based on the Desikan-Killiany-Tourville atlas and an automated segmentation method (FreeSurfer version 6.0). Results After cortical reconstruction, in 7 tesla magnetic resonance imaging volume segmental analysis, compared with the healthy controls, the Parkinson’s disease patients showed global cortical atrophy, mostly in the prefrontal area (rostral middle frontal, superior frontal, inferior parietal lobule, medial orbitofrontal, rostral anterior cingulate area), and subcortical volume atrophy in limbic/paralimbic areas (fusiform, hippocampus, amygdala). Conclusion We first demonstrated that 7 tesla magnetic resonance imaging detects structural abnormalities in Parkinson’s disease patients compared to healthy controls using an automated segmentation method. Compared with the healthy controls, the Parkinson’s disease patients showed global prefrontal cortical atrophy and hippocampal area atrophy.


2021 ◽  
Author(s):  
Catarina Rua ◽  
Claire O'Callaghan ◽  
Rong Ye ◽  
Frank Hubert Hezemans ◽  
Luca Passamonti ◽  
...  

Background: Vulnerability of the substantia nigra dopaminergic neurons in Parkinson's disease is associated with ferric overload, leading to neurodegeneration with cognitive and motor decline. Here, we quantify iron and neuromelanin-related markers in vivo using ultra-high field 7-Tesla MRI, and examine the clinical correlates of these imaging assessments. Methods: Twenty-five people with mild-to-moderate Parkinson's disease and twenty-six healthy controls underwent high-resolution imaging at 7-Tesla with a T2*-weighted sequence (measuring susceptibility-χ and R2*, sensitive to iron) and a magnetization transfer-weighted sequence (MT-w, sensitive to neuromelanin). From an independent control group (N=29), we created study-specific regions-of-interest for five neuromelanin- and/or iron-rich subregions within the substantia nigra. Mean R2*, susceptibility-χ and their ratio, as well as the MT-w contrast-to-noise ratio (MT-CNR) were extracted from these regions and compared between groups. We then tested the relationships between these imaging metrics and clinical severity. Results: People with Parkinson's disease showed a significant ~50% reduction in MT-CNR compared to healthy controls. They also showed a 1.2-fold increase in ferric iron loading (elevation of the ΔR2*/Δχ ratio from 0.19±0.058ms/ppm to 0.22±0.059ms/ppm) in an area of the substantia nigra identified as having both high neuromelanin and susceptibility MRI signal in healthy controls. In this region, the ferric-to-ferrous iron loading was associated with disease duration (β=0.0072, pFDR=0.048) and cognitive impairment (β=-0.0115, pFDR=0.048). Conclusions: T2*-weighted and MT-weighted high-resolution 7T imaging markers identified neurochemical consequences of Parkinson's disease, in overlapping but not-identical regions. These changes correlated with non-motor symptoms.


2012 ◽  
Vol 27 (7) ◽  
pp. 822-830 ◽  
Author(s):  
Stéphane Lehéricy ◽  
Michael A. Sharman ◽  
Clarisse Longo Dos Santos ◽  
Raphaël Paquin ◽  
Cecile Gallea

Sign in / Sign up

Export Citation Format

Share Document