scholarly journals Reliability of pediatric ventricular function analysis by short-axis “single-cycle-stack-advance” single-shot compressed-sensing cines in minimal breath-hold time

Author(s):  
Suzan Hatipoglu ◽  
Peter Gatehouse ◽  
Sylvia Krupickova ◽  
Winston Banya ◽  
Piers Daubeney ◽  
...  

Abstract Objectives Cardiovascular magnetic resonance (CMR) cine imaging by compressed sensing (CS) is promising for patients unable to tolerate long breath-holding. However, the need for a steady-state free-precession (SSFP) preparation cardiac cycle for each slice extends the breath-hold duration (e.g. for 10 slices, 20 cardiac cycles) to an impractical length. We investigated a method reducing breath-hold duration by half and assessed its reliability for biventricular volume analysis in a pediatric population. Methods Fifty-five consecutive pediatric patients (median age 12 years, range 7–17) referred for assessment of congenital heart disease or cardiomyopathy were included. Conventional multiple breath-hold SSFP short-axis (SAX) stack cines served as the reference. Real-time CS SSFP cines were applied without the steady-state preparation cycle preceding each SAX cine slice, accepting the limitation of omitting late diastole. The total acquisition time was 1 RR interval/slice. Volumetric analysis was performed for conventional and “single-cycle-stack-advance” (SCSA) cine stacks. Results Bland–Altman analyses [bias (limits of agreement)] showed good agreement in left ventricular (LV) end-diastolic volume (EDV) [3.6 mL (− 5.8, 12.9)], LV end-systolic volume (ESV) [1.3 mL (− 6.0, 8.6)], LV ejection fraction (EF) [0.1% (− 4.9, 5.1)], right ventricular (RV) EDV [3.5 mL (− 3.34, 10.0)], RV ESV [− 0.23 mL (− 7.4, 6.9)], and RV EF [1.70%, (− 3.7, 7.1)] with a trend toward underestimating LV and RV EDVs with the SCSA method. Image quality was comparable for both methods (p = 0.37). Conclusions LV and RV volumetric parameters agreed well between the SCSA and the conventional sequences. The SCSA method halves the breath-hold duration of the commercially available CS sequence and is a reliable alternative for volumetric analysis in a pediatric population. Key Points • Compressed sensing is a promising accelerated cardiovascular magnetic resonance imaging technique. • We omitted the steady-state preparation cardiac cycle preceding each cine slice in compressed sensing and achieved an acquisition speed of 1 RR interval/slice. • This modification called “single-cycle-stack-advance” enabled the acquisition of an entire short-axis cine stack in a single short breath hold. • When tested in a pediatric patient group, the left and right ventricular volumetric parameters agreed well between the “single-cycle-stack-advance” and the conventional sequences.

Author(s):  
Benjamin Pippard ◽  
Mary Neal ◽  
Adam Maunder ◽  
A John Simpson ◽  
Kieren Hollingsworth ◽  
...  

2020 ◽  
Vol 91 (7) ◽  
pp. 578-585
Author(s):  
Victory C. Madu ◽  
Heather Carnahan ◽  
Robert Brown ◽  
Kerri-Ann Ennis ◽  
Kaitlyn S. Tymko ◽  
...  

PURPOSE: This study was intended to determine the effect of skin cooling on breath-hold duration and predicted emergency air supply duration during immersion.METHODS: While wearing a helicopter transport suit with a dive mask, 12 subjects (29 ± 10 yr, 78 ± 14 kg, 177 ± 7 cm, 2 women) were studied in 8 and 20°C water. Subjects performed a maximum breath-hold, then breathed for 90 s (through a mouthpiece connected to room air) in five skin-exposure conditions. The first trial was out of water for Control (suit zipped, hood on, mask off). Four submersion conditions included exposure of the: Partial Face (hood and mask on); Face (hood on, mask off); Head (hood and mask off); and Whole Body (suit unzipped, hood and mask off).RESULTS: Decreasing temperature and increasing skin exposure reduced breath-hold time (to as low as 10 ± 4 s), generally increased minute ventilation (up to 40 ± 15 L · min−1), and decreased predicted endurance time (PET) of a 55-L helicopter underwater emergency breathing apparatus. In 8°C water, PET decreased from 2 min 39 s (Partial Face) to 1 min 11 s (Whole Body).CONCLUSION: The most significant factor increasing breath-hold and predicted survival time was zipping up the suit. Face masks and suit hoods increased thermal comfort. Therefore, wearing the suits zipped with hoods on and, if possible, donning the dive mask prior to crashing, may increase survivability. The results have important applications for the education and preparation of helicopter occupants. Thermal protective suits and dive masks should be provided.Madu VC, Carnahan H, Brown R, Ennis K-A, Tymko KS, Hurrie DMG, McDonald GK, Cornish SM, Giesbrecht GG. Skin cooling on breath-hold duration and predicted emergency air supply duration during immersion. Aerosp Med Hum Perform. 2020; 91(7):578–585.


1973 ◽  
Vol 1 (2) ◽  
pp. 121-137 ◽  
Author(s):  
J. L. McCarty ◽  
T. J. W. Leland

Abstract The results from recent studies of some factors affecting tire braking and cornering performance are presented together with a discussion of the possible application of these results to the design of aircraft braking systems. The first part of the paper is concerned with steady-state braking, that is, results from tests conducted at a constant slip ratio or steering angle or both. The second part deals with cyclic braking tests, both single cycle, where brakes are applied at a constant rate until wheel lockup is achieved, and rapid cycling of the brakes under control of a currently operational antiskid system.


Diagnostics ◽  
2021 ◽  
Vol 11 (4) ◽  
pp. 634
Author(s):  
Weon Jang ◽  
Ji Soo Song ◽  
Sang Heon Kim ◽  
Jae Do Yang

While magnetic resonance cholangiopancreatography (MRCP) is routinely used, compressed sensing MRCP (CS-MRCP) and gradient and spin-echo MRCP (GRASE-MRCP) with breath-holding (BH) may allow sufficient image quality with shorter acquisition times. This study qualitatively and quantitatively compared BH-CS-MRCP and BH-GRASE-MRCP and evaluated their clinical effectiveness. Data from 59 consecutive patients who underwent both BH-CS-MRCP and BH-GRASE-MRCP were qualitatively analyzed using a five-point Likert-type scale. The signal-to-noise ratio (SNR) of the common bile duct (CBD), contrast-to-noise ratio (CNR) of the CBD and liver, and contrast ratio between periductal tissue and the CBD were measured. Paired t-test, Wilcoxon signed-rank test, and McNemar’s test were used for statistical analysis. No significant differences were found in overall image quality or duct visualization of the CBD, right and left 1st level intrahepatic duct (IHD), cystic duct, and proximal pancreatic duct (PD). BH-CS-MRCP demonstrated higher background suppression and better visualization of right (p = 0.004) and left 2nd level IHD (p < 0.001), mid PD (p = 0.003), and distal PD (p = 0.041). Image quality degradation was less with BH-GRASE-MRCP than BH-CS-MRCP (p = 0.025). Of 24 patients with communication between a cyst and the PD, 21 (87.5%) and 15 patients (62.5%) demonstrated such communication on BH-CS-MRCP and BH-GRASE-MRCP, respectively. SNR, contrast ratio, and CNR of BH-CS-MRCP were higher than BH-GRASE-MRCP (p < 0.001). Both BH-CS-MRCP and BH-GRASE-MRCP are useful imaging methods with sufficient image quality. Each method has advantages, such as better visualization of small ducts with BH-CS-MRCP and greater time saving with BH-GRASE-MRCP. These differences allow diverse choices for visualization of the pancreaticobiliary tree in clinical practice.


1997 ◽  
Vol 200 (24) ◽  
pp. 3091-3099 ◽  
Author(s):  
S A Shaffer ◽  
D P Costa ◽  
T M Williams ◽  
S H Ridgway

The white whale Delphinapterus leucas is an exceptional diver, yet we know little about the physiology that enables this species to make prolonged dives. We studied trained white whales with the specific goal of assessing their diving and swimming performance. Two adult whales performed dives to a test platform suspended at depths of 5-300 m. Behavior was monitored for 457 dives with durations of 2.2-13.3 min. Descent rates were generally less than 2 m s-1 and ascent rates averaged 2.2-3 m s-1. Post-dive plasma lactate concentration increased to as much as 3.4 mmol l-1 (4-5 times the resting level) after dives of 11 min. Mixed venous PO2 measured during voluntary breath-holds decreased from 79 to 20 mmHg within 10 min; however, maximum breath-hold duration was 17 min. Swimming performance was examined by training the whales to follow a boat at speeds of 1.4-4.2 m s-1. Respiratory rates ranged from 1.6 breaths min-1 at rest to 5.5 breaths min-1 during exercise and decreased with increasing swim speed. Post-exercise plasma lactate level increased to 1.8 mmol l-1 (2-3 times the resting level) following 10 min exercise sessions at swimming speeds of 2.5-2.8 m s-1. The results of this study are consistent with the calculated aerobic dive limit (O2 store/metabolic rate) of 9-10 min. In addition, white whales are not well adapted for high-speed swimming compared with other small cetaceans.


Author(s):  
Peter J. Niedbalski ◽  
Junlan Lu ◽  
Chase S. Hall ◽  
Mario Castro ◽  
John P. Mugler ◽  
...  

2020 ◽  
Vol 129 (2) ◽  
pp. 230-237
Author(s):  
Tyler D. Vermeulen ◽  
Brooke M. Shafer ◽  
Anthony V. Incognito ◽  
Massimo Nardone ◽  
André L. Teixeira ◽  
...  

We characterize the occurrence of a square-wave discharge pattern of efferent muscle sympathetic nerve activity during a sinus pause in a young healthy male. This discharge pattern comprised large recruited action potential clusters undetected at baseline that continuously discharged during the sinus pause. Notably, this discharge pattern was still contained within a single cardiac cycle.


Sign in / Sign up

Export Citation Format

Share Document