scholarly journals Modelling the potential ecological niche of domesticated buckwheat in China: archaeological evidence, environmental constraints and climate change

Author(s):  
Marta Krzyzanska ◽  
Harriet V. Hunt ◽  
Enrico R. Crema ◽  
Martin K. Jones

AbstractWe present a species distribution model (SDM) of Fagopyrum esculentum (buckwheat) in China using present distribution data and estimates for the past based on palaeoclimatic reconstructions. Our model estimates the potential area suitable for buckwheat cultivation over the last 8,000 years, with northeast China consistently showing the highest suitability, providing insights on the discrepancy between the location of the earliest archaeobotanical records in the area and its origins in southwest China based on biogeographic and genetic data. The model suggests little to no variation over time in the spatial extent of the potential area suitable for buckwheat cultivation. In the northern parts of China, the limits of the ecological niche largely fall within the borders of the study area, while to the west it never extends into the main Tibetan plateau, explaining the lack of fossil evidence from Central Asia. In the southwest, the niche overlaps with the borders of modern China, which supports this direction as a viable route of westward dispersal. The comparison between the prediction from the model and sites with archaeobotanical evidence for Fagopyrum indicates that the environmental niche it occupied remained stable over time. This may contrast with a dispersal pattern characterised by continuous adaptations to new environments facilitated by human activity, which may be suggested for other major and minor crops.

2017 ◽  
Vol 16 (2) ◽  
pp. 225 ◽  
Author(s):  
Omar Machado Entiauspe-Neto ◽  
Márcia Ferret Renner ◽  
Conrado Mario-da-Rosa ◽  
Arthur Diesel Abegg ◽  
Daniel Loebmann ◽  
...  

The original description of Elapomorphus wuchereri Günther, 1861 included a drawing and brief comments about the morphology of three specimens; two of the latter belong to another species and the holotype is lost. Based on the discovery of new specimens, we redescribe Elapomorphus wuchereri and designate a neotype. We discuss the variation and the taxonomic history of the species, and based on the results of a species distribution model analysis (SDM), we describe the distribution, extent of occurrence, and conservation status.


Alpine Botany ◽  
2020 ◽  
Author(s):  
Harald Crepaz ◽  
Georg Niedrist ◽  
Johannes Wessely ◽  
Mattia Rossi ◽  
Stefan Dullinger

Abstract Mountain plant species are changing their ranges in response to global warming. However, these shifts vary tremendously in rate, extent and direction. The reasons for this variation are yet poorly understood. A process potentially important for mountain plant re-distribution is a competition between colonizing species and the resident vegetation. Here, we focus on the impact of this process using the recent elevational shift of the sedge Carex humilis in the northern Italian Alps as a model system. We repeated and extended historical sampling (conducted in 1976) of the species in the study region. We used the historical distribution data and historical climatic maps to parameterize a species distribution model (SDM) and projected the potential distribution of the species under current conditions. We compared the historical and the current re-survey for the species in terms of the cover of important potential competitor species as well as in terms of the productivity of the resident vegetation indicated by the Normalized Difference Vegetation Index (NDVI). We found that Carex humilis has shifted its leading range margin upward rapidly (51.2 m per decade) but left many sites that have become climatically suitable since 1976 according to the SDM uncolonized. These suitable but uncolonized sites show significantly higher coverage of all dwarf shrub species and higher NDVI than the sites occupied by the sedge. These results suggest that resistance of the resident vegetation against colonization of migrating species can indeed play an important role in controlling the re-distribution of mountain plants under climate change.


2020 ◽  
Author(s):  
Samantha Andrews ◽  
Shawn J. Leroux ◽  
Marie-Josée Fortin

AbstractMobile pelagic species habitat is structured around dynamic oceanographic and ecological processes which operate and interact horizontally and vertically throughout the water column and change over time. However, pelagic species movements and distributions are often poorly understood. We use the Maxent species distribution model to assess how changes in the relative importance of modelled oceanographic (e.g., temperature) and climatic variables (e.g., the North Atlantic Oscillation) over 17-years affect the monthly average horizontal and vertical distribution of a keystone pelagic forage species, Atlantic Canadian capelin (Mallotus villosus). We show the range and distribution of capelin occurrence probabilities vary across horizontal and vertical axes over time, with binary presence/absence predictions indicating capelin occupy between 0.72% (April) and 3.45% (November) of the total modelled space. Furthermore, our analysis reveals that the importance of modelled oceanographic variables, such as temperature, vary between months (44% permutation importance in August to 2% in May). By capturing the spatial dynamics of capelin over horizontal, vertical, and temporal axes, our analysis builds on work that improves our understanding and predictive modelling ability of pelagic species distributions under current and future conditions for pro-active ecosystem-based management.


2021 ◽  
Author(s):  
Camilo Matus-Olivares ◽  
Jaime Carrasco ◽  
José Luis Yela ◽  
Paula Meli ◽  
Andres Weintraub ◽  
...  

Abstract Aim Applying wide and effective sampling of animal communities is rarely possible due to the associated costs and the use of techniques that are not always efficient. Thus, many areas have a faunistic hidden diversity we denote Animal Dark Diversity (ADD), defined as the diversity that is present but not yet detected plus the diversity defined by Pärtel et al. (2011) that is not (yet) present despite the area’s favourable habitat conditions. We evaluated different species distribution model types (SDM techniques) on the basis of three requirements for ADD estimate reliability: 1) estimated spatial patterns of ADD do not differ significantly from other SDM techniques; 2) good predictive performances; and 3) low overfitting. Location Iberian Peninsula. Taxon Chiroptera and Noctuoidea (Lepidoptera) Methods We used distribution data for 25 species of bats and 352 species of moths. We evaluated eleven SDM techniques using biomod2 package implemented in the R software environment. We fitted the various SDM techniques to the data for each species and compared the resulting ADD estimates for the two animal groups under three threshold types. Results The results demonstrated that estimated ADD spatial patterns vary significantly between SDM techniques and depend on the threshold type. They also showed that SDM techniques with overfitting tend to generate smaller ADD sizes, thus reducing the possible species presence estimates. Among the SDMs studied, the ensemble models delivered ADD geographic patterns more like the other techniques while also presenting a high predictive performance for both faunal groups. However, the Ensemble Model Committee Average (ECA) performed much better on the sensitivity metric than all other techniques under any of the thresholds tested. In addition, ECA stood out clearly from the other ensemble model techniques in displaying low-medium overfitting. Main conclusions SDM techniques should no differ among each other in their ADD estimations, have good predictive performances and exhibit low overfitting. Furthermore, to reduce estimate uncertainty it is suggested that the threshold type be one that transforms high values of presences probabilities into binary information and furthermore that the SDM technique have a sensitivity bias, as otherwise the estimates will perform better for species absence in cases where it is not in fact known whether a species is truly absent.


2012 ◽  
Vol 2012 ◽  
pp. 1-6 ◽  
Author(s):  
M. Williams-Tripp ◽  
F. J. N. D'Amico ◽  
C. Pagé ◽  
A. Bertrand ◽  
M. Némoz ◽  
...  

The endemic Pyrenean Desman (Galemys pyrenaicus) is an elusive, rare, and vulnerable species declining over its entire and narrow range (Spain, Portugal, France, and Andorra). The principal set of conservation measures in France is a 5-years National Action Plan based on 25 conservation actions. Priority is given to update its present distribution and develop tools for predictive distribution models. We aim at building the first species distribution model and map for the northern edge of the range of the Desman and confronting the outputs of the model to target conservation efforts in the context of environmental change. Contrasting to former comparable studies, we derive a simpler model emphasizing the importance of factors linked to precipitation and not to the temperature. If temperature is one of the climate change key factors, depicted shrinkage in Desman distribution could be lower or null at the northern (French) edge suggesting thus a major role for this northern population in terms of conservation of the species. Finally, we question the applied issue of temporal and spatial transferability for such environmental favourability models when it is made at the edge of the distribution range.


2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Sonia Paź-Dyderska ◽  
Andrzej M. Jagodziński ◽  
Marcin K. Dyderski

AbstractJuglans regia L. is a species of great importance for environmental management due to attractive wood and nutritious fruits, but also high invasive potential. Thus, uncertainties connected with its range shift are essential for environmental management. We aimed to predict the future climatic optimum of J. regia in Europe under changing climate, to assess the most important climatic factors that determine its potential distribution, and to compare the results obtained among three different global circulation models (GCMs). We used distribution data from the Global Biodiversity Information Facility and completed it with data from the literature. Using the MaxEnt algorithm, we prepared a species distribution model for the years 2061–2080 using 19 bioclimatic variables. We applied three emission scenarios, expressed by representative concentration pathways (RCPs): RCP2.6, RCP4.5, and RCP8.5 and three GCMs: HadGEM2-ES, IPSL-CM5A-LR, and MPI-SM-LR. Our study predicted northward shift of the species, with simultaneous distribution loss at the southern edge of the current range, driven by increasing climate seasonality. Temperature seasonality and temperature annual range were the predictors of highest importance. General trends are common for the projections presented, but the variability of our projections among the GCMs or RCPs applied (predicted range will contract from 17.4 to 84.6% of the current distribution area) shows that caution should be maintained while managing J. regia populations. Adaptive measures should focus on maintaining genetic resources and assisted migration at the southern range edge, due to range contraction. Simultaneously, at the northern edge of the range, J. regia turns into an invasive species, which may need risk assessments and control of unintended spread.


Author(s):  
Samantha Andrews ◽  
Shawn J Leroux ◽  
Marie-Josée Fortin

Abstract Mobile pelagic species habitat is structured around dynamic oceanographic and ecological processes that operate and interact horizontally and vertically throughout the water column and change over time. Due to their extensive movements, pelagic species distributions are often poorly understood. We use the Maxent species distribution model to assess how changes in the relative importance of modelled oceanographic (e.g. temperature) and climatic variables (e.g. the North Atlantic Oscillation) over 17 years affect the monthly average horizontal and vertical distribution of a keystone pelagic forage species, Atlantic Canadian capelin (Mallotus villosus). We show that the range and distribution of capelin occurrence probabilities vary across horizontal and vertical axes over time, with binary presence/absence predictions indicating capelin occupy between 0.72% (April) and 3.45% (November) of the total modelled space. Furthermore, our analysis reveals that the importance of modelled oceanographic variables, such as temperature, varies between months (44% permutation importance in August to 2% in May). By capturing the spatial dynamics of capelin over horizontal, vertical, and temporal axes, our analysis builds on work that improves our understanding and predictive modelling ability of pelagic species distributions under current and future conditions for proactive ecosystem-based management.


2019 ◽  
Author(s):  
James L. Maino ◽  
Elia I. Pirtle ◽  
Peter M. Ridland ◽  
Paul A. Umina

AbstractThe vegetable leafminer, Liriomyza sativae, is an internationally significant pest of vegetable and flower crops, that was detected for the first time on the Australian mainland in 2015. Due to the early stage of its invasion in Australia, it is unclear how climatic conditions are likely to support and potentially restrict the distribution of L. sativae as it expands into a novel range and threatens agricultural production regions. Here we predicted the future establishment potential of L. sativae in Australia, using both a novel ‘bottom-up’ process-based model and a popular ‘top-down’ correlative species distribution model (SDM), leveraging the unique strengths of each approach. Newly compiled global distribution data spanning 42 countries was used to validate the process-based model of establishment potential based on intrinsic population growth rates, as well as parameterise the correlative SDM. Both modelling approaches successfully captured the international distribution of L. sativae based on environmental variables and predicted the high suitability of non-occupied ranges, including northern regions of Australia. The largely unfilled climatic niche available to L. sativae in Australia demonstrates the early stage of its Australian invasion, and highlights locations where important vegetable and nursery production regions in Australia are highly vulnerable to L. sativae establishment.


Sign in / Sign up

Export Citation Format

Share Document