scholarly journals Ectopic expression of the Stabilin2 gene triggered by an intracisternal A particle (IAP) element in DBA/2J strain of mice

2020 ◽  
Vol 31 (1-2) ◽  
pp. 2-16 ◽  
Author(s):  
Nobuyo Maeda-Smithies ◽  
Sylvia Hiller ◽  
Sharlene Dong ◽  
Hyung-Suk Kim ◽  
Brian J. Bennett ◽  
...  

AbstractStabilin2 (Stab2) encodes a large transmembrane protein which is predominantly expressed in the liver sinusoidal endothelial cells (LSECs) and functions as a scavenger receptor for various macromolecules including hyaluronans (HA). In DBA/2J mice, plasma HA concentration is ten times higher than in 129S6 or C57BL/6J mice, and this phenotype is genetically linked to the Stab2 locus. Stab2 mRNA in the LSECs was significantly lower in DBA/2J than in 129S6, leading to reduced STAB2 proteins in the DBA/2J LSECs. We found a retrovirus-derived transposable element, intracisternal A particle (IAP), in the promoter region of Stab2DBA which likely interferes with normal expression in the LSECs. In contrast, in other tissues of DBA/2J mice, the IAP drives high ectopic Stab2DBA transcription starting within the 5′ long terminal repeat of IAP in a reverse orientation and continuing through the downstream Stab2DBA. Ectopic transcription requires the Stab2-IAP element but is dominantly suppressed by the presence of loci on 59.7–73.0 Mb of chromosome (Chr) 13 from C57BL/6J, while the same region in 129S6 requires additional loci for complete suppression. Chr13:59.9–73 Mb contains a large number of genes encoding Krüppel-associated box-domain zinc-finger proteins that target transposable elements-derived sequences and repress their expression. Despite the high amount of ectopic Stab2DBA transcript in tissues other than liver, STAB2 protein was undetectable and unlikely to contribute to the plasma HA levels of DBA/2J mice. Nevertheless, the IAP insertion and its effects on the transcription of the downstream Stab2DBA exemplify that stochastic evolutional events could significantly influence susceptibility to complex but common diseases.

Development ◽  
1994 ◽  
Vol 120 (4) ◽  
pp. 815-826 ◽  
Author(s):  
B. Kramatschek ◽  
J.A. Campos-Ortega

The Enhancer of split gene complex (E(SPL)-C) of Drosophila comprises seven genes encoding bHLH proteins, which are required by neuroectodermal cells for epidermal development. Using promoter and gene fusions with the lacZ gene, we determined the location of cis-acting sequences necessary for normal expression of two of the genes of the E(SPL)-C, E(spl) and HLH-m5. About 0.46 kb of E(spl) and 1.9 kb of HLH-m5 upstream sequences are necessary to reproduce the normal transcription pattern of these genes. The gene products of achaete, scute and lethal of scute, together with that of ventral nervous system condensation defective, act synergistically to specify the neuroectodermal E(spl) and HLH-m5 expression domains. Negative cross- and autoregulatory interactions of the E(SPL)-C on E(spl) contribute, directly or indirectly, to this regulation. Interactions involve DNA binding, since mutagenesis of binding sites for bHLH proteins in the E(spl) promoter abolishes neuroectodermal expression and activates ectopic expression in neuroblasts. A model for activation and repression of E(spl) in the neuroectoderm and neuroblasts, respectively, is proposed.


Genetics ◽  
2001 ◽  
Vol 157 (3) ◽  
pp. 1169-1177
Author(s):  
Natalia E Abramova ◽  
Brian D Cohen ◽  
Odeniel Sertil ◽  
Rachna Kapoor ◽  
Kelvin J A Davies ◽  
...  

Abstract The DAN/TIR genes of Saccharomyces cerevisiae encode homologous mannoproteins, some of which are essential for anaerobic growth. Expression of these genes is induced during anaerobiosis and in some cases during cold shock. We show that several heme-responsive mechanisms combine to regulate DAN/TIR gene expression. The first mechanism employs two repression factors, Mox1 and Mox2, and an activation factor, Mox4 (for mannoprotein regulation by oxygen). The genes encoding these proteins were identified by selecting for recessive mutants with altered regulation of a dan1::ura3 fusion. MOX4 is identical to UPC2, encoding a binucleate zinc cluster protein controlling expression of an anaerobic sterol transport system. Mox4/Upc2 is required for expression of all the DAN/TIR genes. It appears to act through a consensus sequence termed the AR1 site, as does Mox2. The noninducible mox4Δ allele was epistatic to the constitutive mox1 and mox2 mutations, suggesting that Mox1 and Mox2 modulate activation by Mox4 in a heme-dependent fashion. Mutations in a putative repression domain in Mox4 caused constitutive expression of the DAN/TIR genes, indicating a role for this domain in heme repression. MOX4 expression is induced both in anaerobic and cold-shocked cells, so heme may also regulate DAN/TIR expression through inhibition of expression of MOX4. Indeed, ectopic expression of MOX4 in aerobic cells resulted in partially constitutive expression of DAN1. Heme also regulates expression of some of the DAN/TIR genes through the Rox7 repressor, which also controls expression of the hypoxic gene ANB1. In addition Rox1, another heme-responsive repressor, and the global repressors Tup1 and Ssn6 are also required for full aerobic repression of these genes.


2021 ◽  
Vol 12 (5) ◽  
Author(s):  
Xueying Yang ◽  
Fei Shao ◽  
Dong Guo ◽  
Wei Wang ◽  
Juhong Wang ◽  
...  

AbstractFTO removes the N6-methyladenosine (m6A) modification from genes and plays a critical role in cancer development. However, the mechanisms underlying the regulation of FTO and its subsequent impact on the regulation of the epitranscriptome remain to be further elucidated. Here, we demonstrate that FTO expression is downregulated and inversely correlated with poor survival of lung adenocarcinoma patients. Mechanistically, Wnt signaling induces the binding of EZH2 to β-catenin. This protein complex binds to the LEF/TCF-binding elements at the promoter region of FTO, where EZH2 enhances H3K27me3 and inhibits FTO expression. Downregulated FTO expression substantially enhances the m6A levels in the mRNAs of a large number of genes in critical pathways, particularly metabolic pathway genes, such as MYC. Enhanced m6A levels on MYC mRNA recruit YTHDF1 binding, which promotes MYC mRNA translation and a subsequent increase in glycolysis and proliferation of tumor cells and tumorigenesis. Our findings uncovered a critical mechanism of epitranscriptome regulation by Wnt/β-catenin-mediated FTO downregulation and underscored the role of m6A modifications of MYC mRNA in regulating tumor cell glycolysis and growth.


Genetics ◽  
1998 ◽  
Vol 149 (4) ◽  
pp. 1823-1838 ◽  
Author(s):  
Olivier Saget ◽  
Françoise Forquignon ◽  
Pedro Santamaria ◽  
Neel B Randsholt

Abstract We have analyzed the requirements for the multi sex combs (mxc) gene during development to gain further insight into the mechanisms and developmental processes that depend on the important trans-regulators forming the Polycomb group (PcG) in Drosophila melanogaster. mxc is allelic with the tumor suppressor locus lethal (1) malignant blood neoplasm (l(1)mbn). We show that the mxc product is dramatically needed in most tissues because its loss leads to cell death after a few divisions. mxc has also a strong maternal effect. We find that hypomorphic mxc mutations enhance other PcG gene mutant phenotypes and cause ectopic expression of homeotic genes, confirming that PcG products are cooperatively involved in repression of selector genes outside their normal expression domains. We also demonstrate that the mxc product is needed for imaginal head specification, through regulation of the ANT-C gene Deformed. Our analysis reveals that mxc is involved in the maternal control of early zygotic gap gene expression previously reported for some PcG genes and suggests that the mechanism of this early PcG function could be different from the PcG-mediated regulation of homeotic selector genes later in development. We discuss these data in view of the numerous functions of PcG genes during development.


Microbiology ◽  
2009 ◽  
Vol 155 (6) ◽  
pp. 2058-2067 ◽  
Author(s):  
Yoshiko Ishii ◽  
Shigeyuki Kakizawa ◽  
Ayaka Hoshi ◽  
Kensaku Maejima ◽  
Satoshi Kagiwada ◽  
...  

‘Candidatus Phytoplasma asteris’, onion yellows strain (OY), a mildly pathogenic line (OY-M), is a phytopathogenic bacterium transmitted by Macrosteles striifrons leafhoppers. OY-M contains two types of plasmids (EcOYM and pOYM), each of which possesses a gene encoding the putative transmembrane protein, ORF3. A non-insect-transmissible line of this phytoplasma (OY-NIM) has the corresponding plasmids (EcOYNIM and pOYNIM), but pOYNIM lacks orf3. Here we show that in OY-M, orf3 is transcribed from two putative promoters and that on EcOYNIM, one of the promoter sequences is mutated and the other deleted. We also show by immunohistochemical analysis that ORF3 is not expressed in OY-NIM-infected plants. Moreover, ORF3 protein seems to be preferentially expressed in OY-M-infected insects rather than in plants. We speculate that ORF3 may play a role in the interactions of OY with its insect host.


Development ◽  
1994 ◽  
Vol 120 (3) ◽  
pp. 535-544 ◽  
Author(s):  
S.A. Speicher ◽  
U. Thomas ◽  
U. Hinz ◽  
E. Knust

The Drosophila gene Serrate encodes a transmembrane protein with 14 EGF-like repeats in its extracellular domain. Here we show that loss-of-function mutations in this gene lead to larval lethality. Homozygous mutant larvae fail to differentiate the anterior spiracles, exhibit poorly developed mouth-hooks and show a severe reduction in the size of the wing and haltere primordia, which is not due to cell death. The few homozygous mutant escapers that pupariate develop into pharate adults that almost completely lack wings and halteres. Clonal analysis in the adult epidermis demonstrates a requirement for Serrate during wing and haltere development. Targeted ectopic expression of Serrate in the imaginal discs using the yeast transcriptional activator Gal4 results in regionally restricted induction of cell proliferation, e.g. the ventral tissues in the case of the wings and halteres. The results suggest that the wild-type function of Serrate is required for the control of position-specific cell proliferation during development of meso- and metathoracic dorsal discs, which in turn exerts a direct effect on morphogenesis.


2020 ◽  
Vol 47 (5) ◽  
pp. 454
Author(s):  
Jian Li ◽  
Tian Chen ◽  
Fengzhen Huang ◽  
Penghui Dai ◽  
Fuxiang Cao ◽  
...  

Serious seed abortion of dove tree (Davidia involucrate Baill.) is one of the critical factors leading to the low fecundity of this species. Seed abortion is a complicated process and various factors have been verified to synergistically determine the fate of seeds. To reveal the mechanism of seed abortion in D. involucrata, we performed transcriptome analysis in normal and abortive seeds of D. involucrata. According to the transcriptome data, we noticed that most of the genes encoding a MYB transcription factor were predominantly expressed in abortive seeds. Among these, a gene named DiMYB1 was selected and its function was validated in this study. Overexpression of DiMYB1 resulted in obviously reduced viability of transgenic seeds and seedlings, and caused a significantly higher seed abortion rate. The vegetative growth of transgenic plants was hindered, resulting in an earlier flowering time. In addition, colour changes occurred in transgenic plants. Some transgenic sprouts, stems and pods appeared purple instead of green in colour. Our finding demonstrated that DiMYB1 participates in multiple plant developmental processes, especially in seed development in Arabidopsis thaliana (L.) Heynh., which indicated the similar role of this gene in D. involucrata.


Genome ◽  
1998 ◽  
Vol 41 (3) ◽  
pp. 381-390 ◽  
Author(s):  
A J Simmonds ◽  
J B Bell

The invected gene of Drosophila melanogaster is a homeobox-containing gene that is closely related to engrailed. A dominant gain of function allele, invectedDominant, was derived from mutagenesis of a dominant allele of vestigial, In(2R)vgW. A careful analysis of the phenotype of invectedDominant shows that it is associated with a transformation of the anterior compartment of the wing to a posterior fate. This transformation is normally limited to the wing blade itself and does not involve the remaining tissues derived from the wing imaginal disc, including the wing hinge and dorsal thorax of the fly. The ectopic expression of invected protein associated with invectedDominant correlates spatially with the normal expression pattern of vestigial in the wing imaginal disc, suggesting that control elements of vestigial are driving ectopic invected expression. This was confirmed by sequence analysis that shows that the dominant vestigial activity was eliminated by a deletion that removes the 3' portion of the vestigial coding region. This leaves a gene fusion wherein the vestigial enhancer elements are still juxtaposed immediately 5' to the invected transcriptional start site, but with the vg sequences harboring an additional lesion. Unlike recessive invected alleles, the invectedDominant allele produces an observable phenotype, and as such, should prove useful in determining the role of invected in patterning the wing imaginal disc. Genetic analysis has shown that mutations of polyhomeotic, a gene involved in regulating engrailed expression, cause a reproducible alteration in the invectedDominant phenotype. Finally, the invectedDominant allele should prove valuable for identifying and characterizing genes that are activated within the posterior compartment. A screen using various lacZ lines that are asymmetrically expressed in an anterior-posterior manner in the wing imaginal disc isolated one line that shows posterior-specific expression within the transformed anterior compartment.Key words: Drosophila, development, dominant mutation, ectopic, wings.


Sign in / Sign up

Export Citation Format

Share Document