scholarly journals Association of butterflyfishes and stony coral tissue loss disease in the Florida Keys

Coral Reefs ◽  
2020 ◽  
Vol 39 (6) ◽  
pp. 1581-1590
Author(s):  
Kara R. Noonan ◽  
Michael J. Childress

AbstractSince 2014, stony coral tissue loss disease (SCTLD) has rapidly spread throughout the Florida reef tract infecting and killing dozens of coral species. Previous studies have found that corallivorous fishes, such as butterflyfishes, are positively correlated with coral disease prevalence at both local and regional scales. This study investigates the association of SCTLD infection and butterflyfish abundance and behaviors on ten reefs in the middle Florida Keys. Divers conducted video surveys of reef fish abundance and disease prevalence in June 2017, 2018, and 2019; before, during, and after the outbreak of SCTLD infections. SCTLD prevalence increased from 3.2% in 2017 to 36.9% in 2018 and back to 2.7% in 2019. Butterflyfish abundances also showed a similar pattern with a twofold increase in abundance in 2018 over abundances in 2017 and 2019. To better understand the association of individual species of butterflyfishes and diseased corals, 60 coral colonies (20 healthy, 20 diseased, 20 recently dead) were tagged and monitored for butterflyfish activity using both diver-based AGGRA fish counts and 1-h time-lapse videophotography collected in the summers of 2018 and 2019. All reef fishes were more abundant on corals with larger surface areas of live tissue, but only the foureye butterflyfish preferred corals with larger surface areas of diseased tissues. Estimates of association indicate that foureye butterflyfish were found significantly more on diseased corals than either healthy or recently dead corals when compared with the other species of butterflyfishes. Foureye butterflyfish were observed to feed directly on the SCTLD line of infection, while other butterflyfish were not. Furthermore, association of foureye butterflyfish with particular diseased corals decreased from 2018 to 2019 as the SCTLD infections disappeared. Our findings suggest that foureye butterflyfish recruit to and feed on SCTLD-infected corals which may influence the progression and/or transmission of this insidious coral disease.

Author(s):  
Lorenzo Alvarez-Filip ◽  
Nuria Estrada-Saldívar ◽  
Esmeralda Pérez-Cervantes ◽  
Ana Molina-Hernández ◽  
Francisco J. Gonzalez-Barrios

Caribbean reef corals have experienced unprecedented declines from climate change, anthropogenic stressors and infectious diseases in recent decades. Since 2014 a highly lethal, new disease, called stony coral tissue loss disease (SCTLD), has impacted many species in Florida. During the summer of 2018 we noticed an anomalously high disease prevalence affecting different coral species in the northern portion of the Mexican Caribbean. We assessed the severity of this outbreak in 2018/2019 using the AGRRA coral protocol to survey 82 reef sites across the Mexican Caribbean. Then, using a subset of 14 sites we detailed information from before the outbreak (2016/2017) to explore the consequences of the disease on the condition and composition of coral communities. Our findings show that the disease outbreak has already spread across the entire region, affecting similar species (with similar disease patterns) to those previously described for Florida. However, we observed a great variability in prevalence and tissue mortality that was not attributable to any geographical gradient. Using long-term data, we determined that there is no evidence of such high coral disease prevalence anywhere in the region before 2018, which suggests that the entire Mexican Caribbean (~450 km) was afflicted by the disease within a few months. The analysis of sites that contained pre-outbreak information showed that this event considerably increased coral mortality and severely changed the structure of coral communities in the region. Given the high prevalence and lethality of this disease, and the high number of susceptible species, we encourage reef researchers, managers and stakeholders across the Western Atlantic to accord it the highest priority for the near future.


2019 ◽  
Author(s):  
Lorenzo Alvarez-Filip ◽  
Nuria Estrada-Saldívar ◽  
Esmeralda Pérez-Cervantes ◽  
Ana Molina-Hernández ◽  
Francisco J. Gonzalez-Barrios

Caribbean reef corals have experienced unprecedented declines from climate change, anthropogenic stressors and infectious diseases in recent decades. Since 2014 a highly lethal, new disease, called stony coral tissue loss disease (SCTLD), has impacted many species in Florida. During the summer of 2018 we noticed an anomalously high disease prevalence affecting different coral species in the northern portion of the Mexican Caribbean. We assessed the severity of this outbreak in 2018/2019 using the AGRRA coral protocol to survey 82 reef sites across the Mexican Caribbean. Then, using a subset of 14 sites we detailed information from before the outbreak (2016/2017) to explore the consequences of the disease on the condition and composition of coral communities. Our findings show that the disease outbreak has already spread across the entire region, affecting similar species (with similar disease patterns) to those previously described for Florida. However, we observed a great variability in prevalence and tissue mortality that was not attributable to any geographical gradient. Using long-term data, we determined that there is no evidence of such high coral disease prevalence anywhere in the region before 2018, which suggests that the entire Mexican Caribbean (~450 km) was afflicted by the disease within a few months. The analysis of sites that contained pre-outbreak information showed that this event considerably increased coral mortality and severely changed the structure of coral communities in the region. Given the high prevalence and lethality of this disease, and the high number of susceptible species, we encourage reef researchers, managers and stakeholders across the Western Atlantic to accord it the highest priority for the near future.


2021 ◽  
Vol 8 ◽  
Author(s):  
Greta Aeby ◽  
Blake Ushijima ◽  
Erich Bartels ◽  
Cory Walter ◽  
Joseph Kuehl ◽  
...  

Stony coral tissue loss disease (SCTLD) is affecting corals across the Western Atlantic and displays species-specific and regional differences in prevalence, incidence, degree of mortality, and lesion morphology. We examined two Florida sites with different temporal histories of disease emergence; Fort Lauderdale where SCTLD is endemic and the Lower Florida Keys where SCTLD has recently emerged. Our objectives were to (1) assess the potential impact of SCTLD on overall reef condition by surveying reefs in each region, (2) in a single common species, Montastraea cavernosa, examine differences in SCTLD prevalence, colony mortality, and lesion morphology in each region, and (3) look for differences in contagion by conducting transmission experiments using lesions from each region. Reef surveys found sites in both regions had low coral cover, high algae cover, and similar coral species composition. SCTLD prevalence was higher in the Lower Keys than at Fort Lauderdale and two of the common species, M. cavernosa and S. siderea at Fort Lauderdale were dominated by smaller colonies (<5 cm) whereas larger colonies occurred in the Lower Keys. Tagged M. cavernosa SCTLD-affected colonies were followed for 2 years at one site in each region. In both years, Fort Lauderdale colonies showed declining disease prevalence, low colony mortality, and disease lesions were mainly bleached spots lacking tissue loss. In contrast, Lower Keys colonies tagged in the first year maintained 100% disease prevalence with high mortality, and disease lesions were predominantly tissue loss with no bleached edges. However, SCTLD dynamics changed, with year two tagged colonies showing declining disease prevalence, low mortality, and lesion morphology switched to a mixture of bleached polyps and tissue loss with or without bleached edges. Lesion morphology on colonies was a significant predictor of amount of tissue loss. Aquaria studies found the rate of SCTLD transmission using lesions from the different zones (emergent and endemic) were similar. Our study highlights that differences in coral mortality from SCTLD are not necessarily linked to host species, lesion morphology is reflective of subsequent rate of mortality, and disease dynamics change through time on reefs where the disease has newly emerged.


2021 ◽  
Author(s):  
Cynthia C. Becker ◽  
Marilyn Brandt ◽  
Carolyn A. Miller ◽  
Amy Apprill

AbstractStony Coral Tissue Loss Disease (SCTLD) is a devastating disease. Since 2014, it has spread along the entire Florida Reef Tract, presumably via a water-borne vector, and into the greater Caribbean. It was first detected in the United States Virgin Islands (USVI) in January 2019. To more quickly identify disease biomarker microbes, we developed a rapid pipeline for microbiome sequencing. Over a span of 10 days we collected, processed, and sequenced coral tissue and near-coral seawater microbiomes from diseased and apparently healthy Colpophyllia natans, Montastraea cavernosa, Meandrina meandrites and Orbicella franksi. Analysis of the resulting bacterial and archaeal 16S ribosomal RNA sequences revealed 25 biomarker amplicon sequence variants (ASVs) enriched in diseased tissue. These biomarker ASVs were additionally recovered in near-coral seawater (within 5 cm of coral surface), a potential recruitment zone for pathogens. Phylogenetic analysis of the biomarker ASVs belonging to Vibrio, Arcobacter, Rhizobiaceae, and Rhodobacteraceae revealed relatedness to other coral disease-associated bacteria and lineages novel to corals. Additionally, four ASVs (Algicola, Cohaesibacter, Thalassobius and Vibrio) were exact sequence matches to microbes previously associated with SCTLD. This work represents the first rapid coral disease sequencing effort and identifies biomarkers of SCTLD that could be targets for future SCTLD research.


Author(s):  
Peeter Laas ◽  
Kelly Ugarelli ◽  
Breege Boyer ◽  
Michael J. Absten ◽  
Henry O. Briceño ◽  
...  

The Florida Keys, a delicate archipelago of sub-tropical islands extending from the south-eastern tip of Florida, host the vast majority of the only coral barrier reef in the continental United States. Stony Coral Tissue Loss Disease (SCTLD), which was first detected near Virginia Key in 2014, has spread throughout the Florida Reef Tract and to reefs throughout the Caribbean, af-fecting nearly all reef-building corals. Molecular studies of SCTLD have identified opportunistic pathogens associated with the disease, but so far no single pathogen can be clearly pinpointed as its cause. One focus of recent research has been the surrounding environment of the corals, coined the 'coral ecosphere'. Abiotic and microbial components of the coral ecosphere are pivot-al for understanding the health of a reef, and could play an important role in SCTLD in Florida. In this study, we analyzed microbial community structure and abiotic factors that can impact coral (and human) health. Both, bacterial and eukaryotic community structure were significantly linked with variations in temperature, dissolved oxygen and total organic carbon values. High abundances of copiotrophic bacteria as well as several potentially harmful microbes, including coral pathogens, fish parasites, and taxa that have been previously associated with Red Tide and shellfish poisoning, were present in our datasets and can have a pivotal impact on coral health in this ecosystem.


2021 ◽  
Vol 8 ◽  
Author(s):  
Graham Kolodziej ◽  
Michael S. Studivan ◽  
Arthur C. R. Gleason ◽  
Chris Langdon ◽  
Ian C. Enochs ◽  
...  

Since the appearance of stony coral tissue loss disease (SCTLD) on reefs off Miami in 2014, this unprecedented outbreak has spread across the entirety of Florida’s coral reef tract, as well as to many territories throughout the Caribbean. The endemic zone reached the upper Florida Keys by 2016, resulting in partial or complete mortality of coral colonies across numerous species. Disease was first observed at Cheeca Rocks (Islamorada, Florida) in the beginning of 2018, with reports of coral mortality peaking mid-year. The disease was still present at Cheeca Rocks as of March 2020, however, to a lesser degree compared to the initial outbreak. Annual monitoring efforts have been ongoing at Cheeca Rocks since 2012, including repeated benthic photomosaics of a 330 m2 survey zone, spanning six replicate sites. As such, a repository of coral community composition data exists for before and after the disease outbreak that was analyzed to assess the impacts of SCTLD on reef communities at an upper Florida Keys inshore reef. Cheeca Rocks is hypothesized to be a resilient reef due to its persistent high coral cover despite its inshore location, which subjects corals to fluctuating water quality and marginal environmental conditions. Coral populations here have been shown to recover from bleaching events and heat stress with minimal coral mortality. Though colonies of coral species characterized as highly and moderately susceptible to SCTLD (e.g., Colpophyllia natans, Diploria labyrinthiformis, Pseudodiploria strigosa, Orbicella annularis, and O. faveolata) suffered mortality as a result of the outbreak with an average loss of 16.42% relative cover by species, the overall impacts on coral cover and community structure were relatively low, contributing to a loss of total coral cover of only 1.65%. Comparison of photomosaic data to other studies indicate Cheeca Rocks may not have been affected as severely as other sites on Florida’s coral reef tract, underlying this site’s potential role in coral resilience to stressors including bleaching events, land-based pollution, and disease epizootics.


2021 ◽  
Vol 8 ◽  
Author(s):  
Sara D. Williams ◽  
Cory S. Walter ◽  
Erinn M. Muller

One of the latest threats to Florida’s Coral Reef is the stony coral tissue loss disease (SCTLD) outbreak which affects all but a few Caribbean scleractinian species and has spread throughout the Caribbean since 2014. Without a known pathogen, ecological studies of disease dynamics are essential for understanding SCTLD susceptibility at the individual colony and reef level. We investigated the epizootiology of the SCTLD outbreak in the lower Florida Keys at two spatial scales (among reefs ∼1 km and within reefs <10 m) over a 19 month period. In May 2018, three sites absent of SCTLD were established to characterize coral demographics (i.e., live tissue cover and colony diameter) along an offshore to nearshore gradient, and were subsequently surveyed for disease every 2–3 weeks until December 2019. SCTLD was first noted within the offshore and mid-channel reef sites in early October 2018 and later appeared at the nearshore site in early February 2019. SCTLD was negatively correlated with thermal stress, showing reduced progression and incidence rates after 2–3 weeks of water temperatures above the mean monthly maximum temperature for the region (i.e., 2–3 degree heating weeks). Although Pseudodiploria strigosa, Dichocoenia stokesii, Colpophyllia natans, and Diploria labyrinthiformis were the most susceptible species at our sites, areas with more Montastraea cavernosa and Orbicella faveolata colonies had higher prevalence and greater tissue loss associated with disease. The disease was more severe within quadrats with high species diversity, high coral cover, and disproportionately affected larger colonies. Our spatial analyses suggest that (1) SCTLD followed a contagious disease model within small (<10 m) spatial scales, (2) colonies within 1.5–3 m of a diseased coral were at higher risk for subsequently showing disease signs compared with those farther away, and (3) high incidence rates coincided with the loss of small scale (<10 m radius) spatial clustering, suggesting pulses of contagious spread on large spatial scales.


PeerJ ◽  
2019 ◽  
Vol 7 ◽  
pp. e8069 ◽  
Author(s):  
Lorenzo Alvarez-Filip ◽  
Nuria Estrada-Saldívar ◽  
Esmeralda Pérez-Cervantes ◽  
Ana Molina-Hernández ◽  
Francisco J. González-Barrios

Caribbean reef corals have experienced unprecedented declines from climate change, anthropogenic stressors and infectious diseases in recent decades. Since 2014, a highly lethal, new disease, called stony coral tissue loss disease, has impacted many reef-coral species in Florida. During the summer of 2018, we noticed an anomalously high disease prevalence affecting different coral species in the northern portion of the Mexican Caribbean. We assessed the severity of this outbreak in 2018/2019 using the AGRRA coral protocol to survey 82 reef sites across the Mexican Caribbean. Then, using a subset of 14 sites, we detailed information from before the outbreak (2016/2017) to explore the consequences of the disease on the condition and composition of coral communities. Our findings show that the disease outbreak has already spread across the entire region by affecting similar species (with similar disease patterns) to those previously described for Florida. However, we observed a great variability in prevalence and tissue mortality that was not attributable to any geographical gradient. Using long-term data, we determined that there is no evidence of such high coral disease prevalence anywhere in the region before 2018, which suggests that the entire Mexican Caribbean was afflicted by the disease within a few months. The analysis of sites that contained pre-outbreak information showed that this event considerably increased coral mortality and severely changed the structure of coral communities in the region. Given the high prevalence and lethality of this disease, and the high number of susceptible species, we encourage reef researchers, managers and stakeholders across the Western Atlantic to accord it the highest priority for the near future.


2021 ◽  
Vol 8 ◽  
Author(s):  
Sophia V. Costa ◽  
Stephanie J. Hibberts ◽  
Danielle A. Olive ◽  
Kayla A. Budd ◽  
Alexys E. Long ◽  
...  

Stony coral tissue loss disease (SCTLD) was first observed in St. Thomas, U.S. Virgin Islands (USVI) in January 2019. This disease affects at least 20 scleractinian coral species; however, it is not well understood how reef diversity affects its spread or its impacts on reef ecosystems. With a large number of susceptible species, SCTLD may not follow the diversity-disease hypothesis, which proposes that high species diversity is negatively correlated with disease prevalence. Instead, SCTLD may have a higher prevalence and a greater impact on reefs with higher coral diversity. To test this, in 2020 we resampled 54 sites around St. Thomas previously surveyed in 2017 or 2019 by the National Oceanic and Atmospheric Administration National Coral Reef Monitoring Program. These sites represented a variety of species diversity values [categorized into poor (<12 spp. rich.) and rich (≥12 spp. rich.)] in multiple disease zones (Endemic: disease present ≥ 9 months; Epidemic: disease present 2–6 months; Control and Emergent: disease present no disease/<2 months). We hypothesized that, contrary to the diversity-disease hypothesis, sites with high species diversity (as measured by species richness or Simpson’s index) would have higher disease prevalence within the epidemic zone, and that high species diversity sites would have a greater impact from disease within the endemic zone. Results indicated a significant positive relationship between disease prevalence and diversity in the epidemic zone, and a similar trend in the endemic zones. Additionally, a negative relationship was seen between pre-outbreak diversity and loss of diversity and coral cover within the endemic zone. This supports the hypothesis that higher diversity predicts greater disease impact and suggests that SCTLD does not follow the diversity-disease hypothesis. Within the epidemic zone, the species with the highest SCTLD prevalence were Dendrogyra cylindrus, Colpophyllia natans, and Meandrina meandrites, while in the endemic zone, Diploria labyrinthiformis, Pseudodiploria strigosa, Montastraea cavernosa, and Siderastrea siderea had the highest SCTLD prevalence. Understanding the relationship between species diversity and SCTLD will help managers predict the most vulnerable reefs, which should be prioritized within the USVI and greater Caribbean region.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Erin N. Shilling ◽  
Ian R. Combs ◽  
Joshua D. Voss

AbstractStony coral tissue loss disease (SCTLD) was first observed in Florida in 2014 and has since spread to multiple coral reefs across the wider Caribbean. The northern section of Florida’s Coral Reef has been heavily impacted by this outbreak, with some reefs experiencing as much as a 60% loss of living coral tissue area. We experimentally assessed the effectiveness of two intervention treatments on SCTLD-affected Montastraea cavernosa colonies in situ. Colonies were tagged and divided into three treatment groups: (1) chlorinated epoxy, (2) amoxicillin combined with CoreRx/Ocean Alchemists Base 2B, and (3) untreated controls. The experimental colonies were monitored periodically over 11 months to assess treatment effectiveness by tracking lesion development and overall disease status. The Base 2B plus amoxicillin treatment had a 95% success rate at healing individual disease lesions but did not necessarily prevent treated colonies from developing new lesions over time. Chlorinated epoxy treatments were not significantly different from untreated control colonies, suggesting that chlorinated epoxy treatments are an ineffective intervention technique for SCTLD. The results of this experiment expand management options during coral disease outbreaks and contribute to overall knowledge regarding coral health and disease.


Sign in / Sign up

Export Citation Format

Share Document