Mechanism for phosphorus deactivation in silicon-based Schottky diodes submitted to MW-ECR hydrogen plasma

2018 ◽  
Vol 124 (10) ◽  
Author(s):  
D. Belfennache ◽  
D. Madi ◽  
N. Brihi ◽  
M. S. Aida ◽  
M. A. Saeed
Nano Energy ◽  
2021 ◽  
pp. 106861
Author(s):  
Stuart Ferrie ◽  
Anton P. Le Brun ◽  
Gowri Krishnan ◽  
Gunther Anderson ◽  
Nadim Darwish ◽  
...  

1993 ◽  
Vol 316 ◽  
Author(s):  
A. Harnau ◽  
H.-U. Schreiber

ABSTRACTUtilization of radiation damage by means of ion implantation to reduce parasitic capacitances in GaAs integrated circuits has become a well-established technique in the last years. Similar to GaAs, novel high-speed silicon-based devices, e.g. the Si/SiGe heterojunction bipolar transistor, are generally marked by additional short time annealing related to doping activation and a metallization annealing step in the range of 400 °C .For reproducing the external base region of such devices, Si-p+nn+ diodes were realized and investigated using I-V and C-V measurements. Slight radiation damage was achieved by Ne-implantation. Apart from enhanced leakage currents due to space charge recombination, capacitance reduction for frequencies above 50 kHz was observed even for a n-layer doping concentration as high as 1 to 2x1017 cm-3 including a 12 min 400 °C annealing step. Preliminary tests with 250 keV-Ne-ions within a dose range between 1013 and 1014 cm-2 were carried out with Schottky diodes on moderately doped n-type Si-substrate (0.3 Ωcm). For a high temperature furnace anneal at 900 °C (2 min), no capacitance reduction could be observed.Compared to previous results with Ar-implantation to obtain amorphized silicon layers, this technique allows a more easy technological handling concerning the metallization and the use of a simple photoresist pattern.


1994 ◽  
Vol 340 ◽  
Author(s):  
V.A. Gorbyley ◽  
A.A. Chelniy ◽  
A.A. Chekalin ◽  
A.Y. Polyakov ◽  
S.J. Pearon ◽  
...  

ABSTRACTIt is shown that in Au/InGaP and Au/InGaAlP Schottky diodes the Fermi level is pinned by metal-deposition-induced midgap states. Hydrogen plasma treatment of such diodes greatly improves the reverse currents. The measured Schottky barrier heights seem to correlate with the valence band offsets measured by DLTS on quantum well structures.


1995 ◽  
Vol 378 ◽  
Author(s):  
C. W. Nam ◽  
S. Ashok

AbstractSi wafers subject to short-time (4–12 min.), low-temperature atomic hydrogen cleaning in an electron cyclotron resonance (ESR) plasma system have been annealed subsequently in the temperature range 300–750 °C for 20 mins. While only a small broad peak is seen immediately after hydrogenation, several pronounced and distinct majority carrier trap levels show up in deep level transient spectroscopy (DLTS) measurements of subsequently fabricated Schottky diodes on samples annealed at 450 °C and above. The concentrations of these deep levels reach a maximum at anneal temperatures around 500 °C and drop substantially beyond 750 °C. This phenomenon appears to be unrelated to the presence of oxygen in Si and is of potential importance in silicon processing technology.


1991 ◽  
Vol 30 (Part 2, No. 2B) ◽  
pp. L255-L257 ◽  
Author(s):  
Hiroaki Iwakuro ◽  
Toru Inoue ◽  
Tsukasa Kuroda

2021 ◽  
Vol 24 (04) ◽  
pp. 378-389
Author(s):  
D. Belfennache ◽  
◽  
D. Madi ◽  
R. Yekhlef ◽  
L. Toukal ◽  
...  

The main objective of this work is to investigate the effect of thermal annealing in forming gas atmosphere on the mechanism of deactivation and reactivation of phosphorus in silicon-based Schottky diodes. Firstly, the microwave plasma power, initial phosphorus concentration in the samples and hydrogen flux were fixed as 650 W, 1015 cm–3, and 30 sccm, respectively, to investigate the behavior of different working parameters of diodes, specifically the duration and temperature of hydrogenation. Secondly, few samples hydrogenated at 400 °C for 1 h were annealed under the forming gas (10% H2 + 90% N2) within the temperature range from 100 to 700 °C for 1 h. The profiles of active phosphorus concentration were monitored by evaluating the change in concentration of phosphorus after hydrogenation or thermal annealing in a forming gas environment through capacitance-voltage measurements. The obtained results depict the temperature and duration of hydrogenation, which ultimately reveals the complex behavior of phosphorous and hydrogen in silicon. However, the phosphorus passivation rate is homogeneous over all the depths measured at 400 °C. The thermal annealing in a forming gas indicates the increase in passivation rate of phosphorus as a function of annealing temperature, till the passivation rate attains saturation in the sample annealed at 400 °C. At higher temperatures, a decrease in the concentration of phosphorous-hydrogen complexes is observed due to the dissociation of these complexes and reactivation of phosphorus under thermal effect.


Sign in / Sign up

Export Citation Format

Share Document