Sliding Silicon-based Schottky diodes: Maximizing Triboelectricity with Surface Chemistry

Nano Energy ◽  
2021 ◽  
pp. 106861
Author(s):  
Stuart Ferrie ◽  
Anton P. Le Brun ◽  
Gowri Krishnan ◽  
Gunther Anderson ◽  
Nadim Darwish ◽  
...  
1995 ◽  
Vol 414 ◽  
Author(s):  
S. Seal ◽  
S. Krezoski ◽  
T. L. Barr ◽  
D. H. Petering

AbstractSiliceous materials are the principal components of Earth's crust and also have become key ingredients of modem technology. Recently, we have expanded our chemical characterization of complex silicates (e.g., framework [1] and sheet types [2]) to include studies of their interaction with select biocells [3,4]. It is becoming apparent that the surface chemistry of these silicates, and perhaps that of silica itself, plays a key role in the oft resulting cell pathogenesis, thus enhancing the value of further investigations with X-ray photoelectron spectroscopy. The present research describes the unique growth of Ehrlich (murine or rat tumor) cells on Sio and SiO2 wafers, and also on select seaentine silicates (such as chrysotile asbestos). Tbese growth studies were followed by both cell/silicate separations and unique freeze drying [3,4]. XPS examination at select stages discovered cell induced alterations in the Si, O, Mg and particularly Fe chemistry of the silicon based systems as well as corresponding changes in the cell chemistry. Many of these features were confirmed by atomic absorption spectroscopy.


1993 ◽  
Vol 316 ◽  
Author(s):  
A. Harnau ◽  
H.-U. Schreiber

ABSTRACTUtilization of radiation damage by means of ion implantation to reduce parasitic capacitances in GaAs integrated circuits has become a well-established technique in the last years. Similar to GaAs, novel high-speed silicon-based devices, e.g. the Si/SiGe heterojunction bipolar transistor, are generally marked by additional short time annealing related to doping activation and a metallization annealing step in the range of 400 °C .For reproducing the external base region of such devices, Si-p+nn+ diodes were realized and investigated using I-V and C-V measurements. Slight radiation damage was achieved by Ne-implantation. Apart from enhanced leakage currents due to space charge recombination, capacitance reduction for frequencies above 50 kHz was observed even for a n-layer doping concentration as high as 1 to 2x1017 cm-3 including a 12 min 400 °C annealing step. Preliminary tests with 250 keV-Ne-ions within a dose range between 1013 and 1014 cm-2 were carried out with Schottky diodes on moderately doped n-type Si-substrate (0.3 Ωcm). For a high temperature furnace anneal at 900 °C (2 min), no capacitance reduction could be observed.Compared to previous results with Ar-implantation to obtain amorphized silicon layers, this technique allows a more easy technological handling concerning the metallization and the use of a simple photoresist pattern.


NANO ◽  
2020 ◽  
Vol 15 (08) ◽  
pp. 2050097
Author(s):  
Siti Noorhazirah Kamarudin ◽  
Kwan Yiew Lau ◽  
Chee Wei Tan ◽  
Kuan Yong Ching

Good breakdown strength is an important feature for the selection of dielectric materials, especially in high-voltage engineering. Although nanocomposites have been shown to possess many promising dielectric properties, the breakdown strength of nanocomposites is often found to be negatively affected. Recently, imposing nonisothermal crystallization processes on polyethylene blends has been demonstrated to be favorable for breakdown strength improvements of dielectric materials. In an attempt to increase nanocomposites’ voltage rating, this work reports on the effects of nonisothermal crystallization (fast, moderate and slow crystallizations) on the structure and dielectric properties of a polyethylene blend (PE) composed of 80% low density polyethylene and 20% high density polyethylene, added with silicon dioxide (SiO2) and silicon nitride (Si3N4) nanofillers. Through breakdown testing, the breakdown performance of Si3N4-based nanocomposites was better than SiO2-based nanocomposites. Since nanofiller dispersion within both nanocomposite systems was comparable, the enhanced breakdown performance of Si3N4-based nanocomposites is attributed to the surface chemistry of Si3N4 containing less hydroxyl groups than SiO2. Furthermore, the breakdown strength of SiO2-based nanocomposites and Si3N4-based nanocomposites improved, with the DC breakdown strength increasing by at least 12% when both the nanocomposites were subjected to moderate crystallization rather than fast and slow crystallizations. This is attributed to changes in the underlying molecular conformation of PE in addition to water-related effects. These results suggest that apart from changes in the nanofiller surface chemistry, changes in the underlying molecular conformation of polymers are also important to improve the breakdown performance of nanocomposites.


Sensors ◽  
2019 ◽  
Vol 19 (21) ◽  
pp. 4776 ◽  
Author(s):  
Luca De Stefano

Even if the first published article on a porous silicon (PSi)-based biosensor dates back to more than twenty years ago, this technology still attracts great attention from many research groups around the world. In this brief review, the pros and cons of porous silicon-based optical biosensors will be highlighted on the basis of some recent results and published papers on this subject. The aim of the paper is to give a straightforward introduction to PhD students and young researchers on this subject, which is particularly full of educative content, since it is highly multidisciplinary. Fabrication of PSi-based optical biosensors requires competencies related to many different scientific topics ranging from material science, physics and optics to healthcare and environmental monitoring through surface chemistry and more.


2021 ◽  
Author(s):  
Andriy Nadtochiy ◽  
Artem Podolian ◽  
Oleg Korotchenkov ◽  
Viktor Schlosser

The usage of power ultrasound for sonochemical processing of Si wafers and thin layers of amorphous Si and SiGe alloys is described. Over the last decade different industries have become increasingly drawn to sonochemistry because it provides a green and clean alternative to conventional technologies, particular in the areas of processing of silicon-based materials for photovoltaic applications. Two techniques related to ultrasonic cleaning of Si wafers and sonochemical modification of Si, SiGe and a-Si/SiGe surfaces in hydrocarbon solutions of chloroform (CHCl3) and dichloromethane (CH2Cl2) are discussed. The occurrence of cavitation and bubble implosion is an indispensable prerequisite for ultrasonic cleaning and surface processing as it is known today. The use of higher ultrasonic frequencies to expand the range of ultrasonic cleaning and processing capabilities is emphasized. Although exact mechanisms of an improved photoelectric behavior of Si-based structures subjected to power ultrasound are not yet clarified in many cases, the likely scenarios behind the observed photovoltaic performances of Si, SiGe and a-Si/SiGe surfaces are proposed to involve the surface chemistry of oxygen and hydrogen molecules as well hydrocarbon chains.


2021 ◽  
Vol 24 (04) ◽  
pp. 378-389
Author(s):  
D. Belfennache ◽  
◽  
D. Madi ◽  
R. Yekhlef ◽  
L. Toukal ◽  
...  

The main objective of this work is to investigate the effect of thermal annealing in forming gas atmosphere on the mechanism of deactivation and reactivation of phosphorus in silicon-based Schottky diodes. Firstly, the microwave plasma power, initial phosphorus concentration in the samples and hydrogen flux were fixed as 650 W, 1015 cm–3, and 30 sccm, respectively, to investigate the behavior of different working parameters of diodes, specifically the duration and temperature of hydrogenation. Secondly, few samples hydrogenated at 400 °C for 1 h were annealed under the forming gas (10% H2 + 90% N2) within the temperature range from 100 to 700 °C for 1 h. The profiles of active phosphorus concentration were monitored by evaluating the change in concentration of phosphorus after hydrogenation or thermal annealing in a forming gas environment through capacitance-voltage measurements. The obtained results depict the temperature and duration of hydrogenation, which ultimately reveals the complex behavior of phosphorous and hydrogen in silicon. However, the phosphorus passivation rate is homogeneous over all the depths measured at 400 °C. The thermal annealing in a forming gas indicates the increase in passivation rate of phosphorus as a function of annealing temperature, till the passivation rate attains saturation in the sample annealed at 400 °C. At higher temperatures, a decrease in the concentration of phosphorous-hydrogen complexes is observed due to the dissociation of these complexes and reactivation of phosphorus under thermal effect.


Sign in / Sign up

Export Citation Format

Share Document