scholarly journals Transition layer thickness in a fluid-porous medium of multi-sized spherical beads

2008 ◽  
Vol 46 (2) ◽  
Author(s):  
Mohammad Reza Morad ◽  
Arzhang Khalili
2009 ◽  
Vol 39 (3) ◽  
pp. 780-797 ◽  
Author(s):  
T. M. Shaun Johnston ◽  
Daniel L. Rudnick

Abstract The transition layer is the poorly understood interface between the stratified, weakly turbulent interior and the strongly turbulent surface mixed layer. The transition layer displays elevated thermohaline variance compared to the interior and maxima in current shear, vertical stratification, and potential vorticity. A database of 91 916 km or 25 426 vertical profiles of temperature and salinity from SeaSoar, a towed vehicle, is used to define the transition layer thickness. Acoustic Doppler current measurements are also used, when available. Statistics of the transition layer thickness are compared for 232 straight SeaSoar sections, which range in length from 65 to 1129 km with typical horizontal resolution of ∼4 km and vertical resolution of 8 m. Transition layer thicknesses are calculated in three groups from 1) vertical displacements of the mixed layer base and of interior isopycnals into the mixed layer; 2) the depths below the mixed layer depth of peaks in shear, stratification, and potential vorticity and their widths; and 3) the depths below or above the mixed layer depth of extrema in thermohaline variance, density ratio, and isopycnal slope. From each SeaSoar section, the authors compile either a single value or a median value for each of the above measures. Each definition yields a median transition layer thickness from 8 to 24 m below the mixed layer depth. The only exception is the median depth of the maximum isopycnal slope, which is 37 m above the mixed layer base, but its mode is 15–25 m above the mixed layer base. Although the depths of the stratification, shear, and potential vorticity peaks below the mixed layer are not correlated with the mixed layer depth, the widths of the shear and potential vorticity peaks are. Transition layer thicknesses from displacements and the full width at half maximum of the shear and potential vorticity peak give transition layer thicknesses from 0.11× to 0.22× the mean depth of the mixed layer. From individual profiles, the depth of the shear peak below the stratification peak has a median value of 6 m, which shows that momentum fluxes penetrate farther than buoyancy fluxes. A typical horizontal scale of 5–10 km for the transition layer comes from the product of the isopycnal slope and a transition layer thickness suggesting the importance of submesoscale processes in forming the transition layer. Two possible parameterizations for transition layer thickness are 1) a constant of 11–24 m below the mixed layer depth as found for the shear, stratification, potential vorticity, and thermohaline variance maxima and the density ratio extrema; and 2) a linear function of mixed layer depth as found for isopycnal displacements and the widths of the shear and potential vorticity peaks.


Author(s):  
SamerA Alokaily

Abstract In this paper, coupled parallel flow in a triple layer channel is studied numerically. The channel consists of a clear fluid sandwiched between two Darcy-Brinkman permeable layers of variable porousness. A single binary equation is presented, in which the penetrability within transition porous layers, is portrayed by a nth degree objective capacity. However, because of the absence of explanatory arrangement of the issue, direct numerical simulations are performed in order to give a novel knowledge into the fluid dynamics inside permeable media of variable porousness. These simulations are carried out through utilizing a modified steady state finite volume solver from the open source programming bundle OpenFOAM. After check and approval of the solver and mathematical technique, parametric investigation is acted in which the Darcy number, intensity of the penetrability degree, transition layer thickness, channel depth, fluid viscosity, and pressure gradient vary. The findings of the current study show that velocity increases when: First, the Darcy number, the degree, or the channel depth increases. Second, when the transition layer thickness decreases. Also, strain rate is almost independent of both Darcy number and degree, and nearly doubles when either the thickness of transition layer halves or the channel depth doubles. In addition, velocity and strain rate are found to scale with viscosity and pressure gradient.


1993 ◽  
Vol 23 (6) ◽  
pp. 662-668 ◽  
Author(s):  
A. R. Despić ◽  
T. LJ. Trišović

Author(s):  
Tasawar Hayat ◽  
Taseer Muhammad ◽  
Sabir Ali Shehzad ◽  
A. Alsaedi

Purpose – The purpose of this paper is to study the Soret and Dufour effects in three-dimensional flow induced by an exponential stretching surface in a porous medium. Design/methodology/approach – Series solutions are developed. Findings – The authors observed that the temperature profile and thermal boundary layer thickness are enhanced when the authors increase the values of Dufour number. It is also examined that the concentration field and its associated boundary layer thickness are higher for the larger values of Soret number. Originality/value – Such investigation is not available in the literature.


2020 ◽  
Vol 9 (1) ◽  
pp. 457-469
Author(s):  
Bidyut Mandal ◽  
Krishnendu Bhattacharyya ◽  
Astick Banerjee ◽  
Ajeet Kumar Verma ◽  
Anil Kumar Gautam

AbstractThis work is concerned with a steady 2D laminar MHD mixed convective flow of an electrically conducting Newtonian fluid with low electrical conductivity along with heat and mass transfer on an isothermal stretching semi-infinite inclined plate embedded in a Darcy porous medium. Along with a strong uniform transverse external magnetic field, the Soret effect is considered. The temperature and concentration at the wall are varying with distance from the edge along the plate, but it is uniform at far away from the plate. The governing equations with necessary flow conditions are formulated under boundary layer approximations. Then a continuous group of symmetry transformations are employed to the governing equations and boundary conditions which determine a set of self-similar equations with necessary scaling laws. These equations are solved numerically and similar velocity, concentration, and temperature for various values of involved parameters are obtained and presented through graphs. The momentum boundary layer thickness becomes larger with increasing thermal and concentration buoyancy forces. The flow boundary layer thickness decreases with the angle of inclination of the stretching plate. The concentration increases considerably for larger values of the Soret number and it decreases with Lewis number. The skin friction coefficient increases for increasing angle of inclination of the plate, magnetic and porosity parameters, however it decreases for rise of thermal and solutal buoyancy parameters. In this double diffusive boundary layer flow, Nusselt and Sherweed numbers increase for rise of thermal and solutal buoyancy parameters, Prandtl number, but they behave opposite nature in case of angle of inclination of the plate, magnetic and porosity parameters. The Sherwood number increases for increasing Lewis number but it decreases for increasing Soret number.


2011 ◽  
Vol 15 (suppl. 2) ◽  
pp. 205-220 ◽  
Author(s):  
Iftikhar Ahmad ◽  
Manzoor Ahmed ◽  
Zaheer Abbas ◽  
Muhammad Sajid

In this study, we present a steady three-dimensional magnetohydrodynamic (MHD) flow and heat transfer characteristics of a viscous fluid due to a bidirectional stretching sheet in a porous medium. The heat transfer analysis has been carried out for two heating processes namely (i) the prescribed surface temperature (PST) and (ii) prescribed surface heat flux (PHF). In addition the heat transfer rate varies along the surface. The similarity solution of the governing boundary layer partial differential equations is developed by employing homotopy analysis method (HAM). The quantities of interest are velocity, temperature, skin-friction and wall heat flux. The results obtained are presented through graphs and tabular data. It is observed that both velocity and boundary layer thickness decreases by increasing the porosity and magnetic field. This shows that application of magnetic and porous medium cause a control on the boundary layer thickness. Moreover, the results are also compared with the existing values in the literature and found in excellent agreement.


Author(s):  
C. C. Ngo ◽  
F. C. Lai

Heat transfer induced by buoyancy from a pipe buried in a semi-infinite porous medium with a superimposed fluid layer has been numerically examined in this study. Due to the complexity involved, finite difference method along with body-fitted coordinate systems has been employed. The Brinkman-extended Darcy equations are used to model flow in the porous medium while Navier-Stokes equations are used for the fluid layer. The conditions applied at the interface between the fluid and porous layers are the continuity of temperature, heat flux, normal and tangential velocity, shear stress and pressure. A parametric study has been performed to investigate the effects of Rayleigh number, Prandtl number, Darcy number, and fluid layer thickness on the flow patterns and heat transfer rates. The results show that heat transfer increases with the Rayleigh number, but the convective strength decreases with the Darcy number. The heat transfer rate is smaller when the superimposed fluid is air instead of water. For a porous layer with Da ≤ 0.0005 and an overlaying fluid layer thickness of L/ri ≥ 1, convection is initiated in the fluid layer and it may develop into multiple recirculating cells at a moderate Rayleigh number (i.e., Ra ≤ 104), and may further develop into a single cell at a higher Rayleigh number of 105.


2009 ◽  
Vol 95 (3) ◽  
pp. 032108 ◽  
Author(s):  
T. L. Biggerstaff ◽  
C. L. Reynolds ◽  
T. Zheleva ◽  
A. Lelis ◽  
D. Habersat ◽  
...  

1988 ◽  
Vol 110 (4a) ◽  
pp. 961-967 ◽  
Author(s):  
J. Orozco ◽  
R. Stellman ◽  
M. Gutjahr

This paper analyses both theoretically and experimentally the problem of film boiling from a body embedded in a liquid-saturated porous medium. Two body geometries are investigated thoroughly: a horizontal cylinder and a sphere. The theoretical model relies on the Brinkman-extended flow model to describe the flow field inside the thin vapor layer occupying the neighborhood near the heated surface. The theoretical model also includes an improved formulation of the effective conductivity in the vicinity of the heater as a function of the vapor layer thickness and the geometry of the porous medium material. Solutions are obtained for the vapor layer thickness and the local Nusselt number as a function of angular position. Numerical solutions are also obtained for the overall heat transfer rates from the surface to the fluid for a given vapor superheat. Experimental data for a 12.70 mm stainless steel cylindrical heater embedded in a 3-mm glass particle porous medium were obtained under steady—state operation. The experimental data obtained are compared with the theoretical analysis. The comparison shows that there is a good agreement between theory and experiments. The theoretical model is also compared with the experimental data obtained by other investigators for a spherical geometry. Excellent results are obtained in such comparison.


Sign in / Sign up

Export Citation Format

Share Document