Experiment on smooth, circular cylinders in cross-flow in the critical Reynolds number regime

2011 ◽  
Vol 51 (4) ◽  
pp. 949-967 ◽  
Author(s):  
J. J. Miau ◽  
H. W. Tsai ◽  
Y. J. Lin ◽  
J. K. Tu ◽  
C. H. Fang ◽  
...  
Energies ◽  
2018 ◽  
Vol 11 (8) ◽  
pp. 2094 ◽  
Author(s):  
Mustafa Erguvan ◽  
David MacPhee

In this study, energy and exergy analyses have been investigated numerically for unsteady cross-flow over heated circular cylinders. Numerous simulations were conducted varying the number of inline tubes, inlet velocity, dimensionless pitch ratios and Reynolds number. Heat leakage into the domain is modeled as a source term. Numerical results compare favorably to published data in terms of Nusselt number and pressure drop. It was found that the energy efficiency varies between 72% and 98% for all cases, and viscous dissipation has a very low effect on the energy efficiency for low Reynolds number cases. The exergy efficiency ranges from 40–64%, and the entropy generation due to heat transfer was found to have a significant effect on exergy efficiency. The results suggest that exergy efficiency can be maximized by choosing specific pitch ratios for various Reynolds numbers. The results could be useful in designing more efficient heat recovery systems, especially for low temperature applications.


Author(s):  
Andrew E. Potts ◽  
Douglas A. Potts ◽  
Hayden Marcollo ◽  
Kanishka Jayasinghe

The prediction of Vortex-Induced Vibration (VIV) of cylinders under fluid flow conditions depends upon the eddy shedding frequency, conventionally described by the Strouhal Number. The most commonly cited relationship between Strouhal Number and Reynolds Number for circular cylinders was developed by Lienhard [1], whereby the Strouhal Number exhibits a consistent narrow band of about 0.2 (conventional across the sub-critical Re range), with a pronounced hump peaking at about 0.5 within the critical flow regime. The source data underlying this relationship is re-examined, wherein it was found to be predominantly associated with eddy shedding frequency about fixed or stationary cylinders. The pronounced hump appears to be an artefact of the measurement techniques employed by various investigators to detect eddy-shedding frequency in the wake of the cylinder. A variety of contemporary test data for elastically mounted cylinders, with freedom to oscillate under one degree of freedom (i.e. cross flow) and two degrees of freedom (i.e. cross flow and in-line) were evaluated and compared against the conventional Strouhal Number relationship. It is well established for VIV that the eddy shedding frequency will synchronise with the near resonant motions of a dynamically oscillating cylinder, such that the resultant bandwidth of lock-in exhibits a wider range of effective Strouhal Numbers than that reflected in the narrow-banded relationship about a mean of 0.2. However, whilst cylinders oscillating under one degree of freedom exhibit a mean Strouhal Number of 0.2 consistent with fixed/stationary cylinders, cylinders with two degrees of freedom exhibit a much lower mean Strouhal Number of around 0.14–0.15. Data supports the relationship that Strouhal Number does slightly diminish with increasing Reynolds Number. For oscillating cylinders, the bandwidth about the mean Strouhal Number value appears to remain largely consistent. For many practical structures in the marine environment subject to VIV excitation, such as long span, slender risers, mooring lines, pipeline spans, towed array sonar strings, and alike, the long flexible cylinders will respond in two degrees of freedom, where the identified difference in Strouhal Number is a significant aspect to be accounted for in the modelling of its dynamic behaviour.


Author(s):  
Murilo M. Cicolin ◽  
Gustavo R. S. Assi

Experiments have been carried out on models of rigid circular cylinders fitted with three different types of permeable meshes to investigate their effectiveness in the suppression of vortex-induced vibrations (VIV). Measurements of amplitude of vibration and drag force are presented for models with low mass and damping which are free to respond in the cross-flow direction. Results for two meshes made of ropes and cylindrical tubes are compared with the VIV response of a bare cylinder and that of a known suppressor called the “ventilated trousers” (VT). All three meshes achieved an average 50% reduction of the peak response when compared with that of the bare cylinder. The sparse mesh configuration presented a similar behaviour to the VT, while the dense mesh produced considerable VIV response for an indefinitely long range of reduced velocity. All the three meshes have increased drag when compared with that of the bare cylinder. Reynolds number ranged from 5,000 to 25,000 and reduced velocity was varied between 2 and 15.


2006 ◽  
Vol 128 (5) ◽  
pp. 1101-1105 ◽  
Author(s):  
L. Zhang ◽  
S. Balachandar

Hopf bifurcation of steady base flow and onset of vortex shedding over a transverse periodic array of circular cylinders is considered. The influence of transverse spacing on critical Reynolds number is investigated by systematically varying the gap between the cylinders from a small value to large separations. The critical Reynolds number behavior for the periodic array of circular cylinders is compared with the corresponding result for a periodic array of long rectangular cylinders considered in [Balanchandar, S., and Parker, S. J., 2002, “Onset of Vortex Shedding in an Inline and Staggered Array of Rectangular Cylinders,” Phys. Fluids, 14, pp. 3714–3732]. The differences between the two cases are interpreted in terms of differences between their wake profiles.


2002 ◽  
Vol 2002.51 (0) ◽  
pp. 37-38
Author(s):  
Ryo IMAI ◽  
Kazuhiko KATO ◽  
Nobuyuki OHKURA ◽  
Hidetoshi HAYAFUJI ◽  
Muneshige OKUDE

2005 ◽  
Vol 19 (28n29) ◽  
pp. 1595-1598 ◽  
Author(s):  
KAZUO OHMI ◽  
SUXIA LI ◽  
SEUNGHEE JEON ◽  
LINGYUN CHEN

The wake of two circular cylinders in tandem arrangement is investigated by flow visualization and PIV experiments in a towing water tank. The two cylinders are spaced at L/d (spacing ratio) = 2.0 to 15.0 and the cross flow Reynolds number ranges from 60 to 120. The flow is seeded with fine Rilsan particles and illuminated by a 2 mm thick laser sheet. The PIV image analysis is done by a standard cross correlation scheme with a powerful validation algorithm followed by multi-pass adaptive cross correlation iterations. The main objective of the study is to investigate the characteristics of the downstream cylinder wake changing considerably with the spacing ratio of the two cylinders.


2011 ◽  
Vol 52 (5) ◽  
pp. 1295-1306 ◽  
Author(s):  
N. Nikitas ◽  
J. H. G. Macdonald ◽  
J. B. Jakobsen ◽  
T. L. Andersen

1998 ◽  
Author(s):  
Takashi Yoshinaga ◽  
Mamoru Sato ◽  
Atsushi Tate ◽  
Norikazu Sudani ◽  
Kunio Soga

Sign in / Sign up

Export Citation Format

Share Document