A wavelet approach for the variable-order fractional model of ultra-short pulsed laser therapy

Author(s):  
R. Roohi ◽  
M. Hosseininia ◽  
M. H. Heydari
Fractals ◽  
2021 ◽  
Author(s):  
WEI CAI ◽  
PING WANG

In this paper, a power-law strain-dependent variable order is first incorporated into the fractional constitutive model and employed to describe mechanical behaviors of aluminum foams under quasi-static compression and tension. Comparative results illustrate that power-law strain-dependent variable order is capable of better describing stress–strain responses compared with the traditional linear one. The evolution of fractional order along with the porosities or relative densities can be well qualitatively interpreted by its physical meaning. Furthermore, the model is also extended to characterize the impact behaviors under large constant strain rates. It is observed that fractional model with sinusoidal variable order agrees well with the experimental data of aluminum foams with impact and non-impact surfaces.


Energies ◽  
2021 ◽  
Vol 14 (17) ◽  
pp. 5512
Author(s):  
Slawomir Blasiak

This article presents a variable-order derivative (VOD) time fractional model for describing heat transfer in the rotor or stator in non-contacting mechanical face seals. Most theoretical studies so far have been based on the classical equation of heat transfer. Recently, constant-order derivative (COD) time fractional models have also been used. The VOD time fractional model considered here is able to provide adequate information on the heat transfer phenomena occurring in non-contacting face seals, especially during the startup. The model was solved analytically, but the characteristic features of the model were determined through numerical simulations. The equation of heat transfer in this model was analyzed as a function of time. The phenomena observed in the seal include the conduction of heat from the fluid film in the gap to the rotor and the stator, followed by convection to the fluid surrounding them. In the calculations, it is assumed that the working medium is water. The major objective of the study was to compare the results of the classical equation of heat transfer with the results of the equations involving the use of the fractional-order derivative. The order of the derivative was assumed to be a function of time. The mathematical analysis based on the fractional differential equation is suitable to develop more detailed mathematical models describing physical phenomena.


1993 ◽  
Vol 14 (Supplement) ◽  
pp. 399-402
Author(s):  
YOSHIO ENOMOTO ◽  
HIDEO OKUBO ◽  
SUSUMU SHIMIZU

Author(s):  
Emanuele Mocciaro ◽  
Rinat O. Esenaliev ◽  
Stacey Sell ◽  
Irene Petrov ◽  
Yuriy Petrov ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document