Effect of nitrogen rate and root-zone mix on rhizosphere bacterial populations and root mass in creeping bentgrass putting greens

2003 ◽  
Vol 37 (6) ◽  
pp. 348-354 ◽  
Author(s):  
M. L. Elliott ◽  
E. A. Guertal ◽  
E. A. Des Jardin ◽  
H. D. Skipper
2005 ◽  
Vol 15 (1) ◽  
pp. 169-172 ◽  
Author(s):  
M.A. Fidanza ◽  
P.F. Colbaugh ◽  
M.C. Engelke ◽  
S.D. Davis ◽  
K.E. Kenworthy

Fairy ring is a common and troublesome disease of turfgrasses maintained on golf course putting greens. Type-I fairy ring is especially destructive due to the development of hydrophobic conditions in the thatch and root zone, thus contributing to turfgrass injury and loss. The objective of this 2-year field study was to evaluate the application and novel delivery method of two fungicides and a soil surfactant for curative control of type-I fairy ring in a 20-year-old creeping bentgrass [Agrostis palustris (synonym A. stolonifera)] putting green. In both years, all treatments were applied twice on a 28-day interval. In 1998, flutolanil and azoxystrobin fungicides were applied alone and in combination with Primer soil surfactant by a conventional topical spray method, and fungicides without Primer applied via high-pressure injection (HPI). Acceptable type-I fairy ring control was observed in plots treated with flutolanil plus Primer, HPI flutolanil, azoxystrobin alone, azoxystrobin plus Primer, or HPI azoxystrobin. In 1999, treatments were HPI flutolanil, HPI flutolanil plus Primer, HPI azoxystrobin, HPI water only, and aeration only. Acceptable type-I fairy ring control was observed in plots treated with HPI flutolanil plus Primer or HPI azoxystrobin. HPI of fungicides alone or in combination with a soil surfactant may be a viable option for alleviating type-I fairy ring symptoms on golf course putting greens.


2001 ◽  
Vol 11 (3) ◽  
pp. 437-440 ◽  
Author(s):  
Keith J. Karnok ◽  
Kevin A. Tucker

Localized dry spot (LDS) caused by water repellent soil is a common problem on golf course putting greens having a predominately sand root zone. Fairy ring often causes LDS by developing hydrophobic soil. Although the fungicide flutolanil is labeled for the control of fairy ring, golf course superintendents often apply flutolanil to all LDS caused by hydrophobic soil and other conditions. The objective of this study was to determine the effect of flutolanil on an existing hydrophobic soil. The study was conducted on a creeping bentgrass [Agrostis palustris (synonym A. stolonifera)] experimental golf green in which the top 4 inches (10.2 cm) of the root zone was a moderately hydrophobic sand. Six treatments were used: uncored, cored, flutolanil (two applications.), flutolanil + Primer wetting agent (two applications.), Primer (two applications.) and Primer (three applications.). Plots receiving the fungicide and wetting agent treatments were cored before application. Each treatment containing the wetting agent significantly reduced soil water repellency. Flutolanil without wetting agent had no effect on soil hydrophobicity.


HortScience ◽  
2005 ◽  
Vol 40 (3) ◽  
pp. 836-838 ◽  
Author(s):  
Patrick E. McCullough ◽  
Haibo Liu ◽  
Lambert B. McCarty

Ethephon is an effective growth retardant for suppressing Poa annua (L.) seedheads in creeping bentgrass putting greens; however, ethylene induction may cause bentgrass leaf chlorosis, reduced rooting, and quality decline. Two greenhouse experiments investigated the effects of nitrogen (N) fertility and ethephon applications on `L-93' creeping bentgrass over 9 weeks. Ethephon was applied at 0, 3.8, and 7.6 kg·ha–1 a.i. per 3 weeks and N was applied at 4 and 8 kg·ha–1·week–1. Ethephon applications linearly reduced bentgrass quality on every weekly observation. Increased N rate to 8 kg·ha–1·week–1 improved turf quality about 10% to 20% and 10% to 30% from ethephon applied at 3.8 and 7.6 kg·ha–1 per 3 weeks, respectively. Increased N rate to 8 kg·ha–1·week–1 enhanced shoot growth 30% but reduced root mass and length 12% and 11%, respectively. After 9 weeks, ethephon reduced root length by about 30% and root mass about 35% at both rates. From nine weekly samples, ethephon reduced dry clipping yield 10% and 16% at 3.8 and 7.6 kg·ha–1 per 3 weeks, respectively. From 2 to 9 weeks after initial treatments, ethephon linearly increased leaf water content. Increasing N fertility effectively reduced bentgrass leaf chlorosis from ethephon; however, repeat applications of ethephon and increased N may restrict bentgrass root growth. Chemical names used: [(2-chloroethyl)phosphonic acid] (ethephon).


HortScience ◽  
2008 ◽  
Vol 43 (2) ◽  
pp. 514-518 ◽  
Author(s):  
Monica L. Elliott ◽  
J.A. McInroy ◽  
K. Xiong ◽  
J.H. Kim ◽  
H.D. Skipper ◽  
...  

Taxonomic diversity of bacteria associated with golf course putting greens is a topic that has not been widely explored. The purpose of this project was to isolate and identify culturable bacteria from the rhizosphere of creeping bentgrass (Agrostris palustris Huds.) at two sites (Alabama and North Carolina) and hybrid bermudagrass [Cynodon dactylon (L.) Pers. × C. transvaalensis Burtt-Davy] at two sites (Florida and South Carolina) for a minimum of 3 years with sampling initiated after the construction process. Randomly selected colonies were identified using gas chromatography for analysis of fatty acid methyl ester profiles. Over 9000 isolates were successfully analyzed. When a similarity index of 0.300 or higher was used, the average number of unidentifiable isolates was 38.6%. The two dominant genera in both bentgrass and bermudagrass rhizospheres were Bacillus and Pseudomonas with Bacillus dominant in bermudagrass and Pseudomonas dominant or equal to Bacillus in bentgrass. Other genera that comprised at least 1% of the isolates at all four sites were Clavibacter, Flavobacterium, and Microbacterium. Arthrobacter also comprised a significant portion of the bacterial isolates in the bentgrass rhizosphere, but not the bermudagrass rhizosphere. Overall, there were 40 genera common to all four sites. At the species level, there were five that comprised at least 1% of the isolates at each location: B. cereus, B. megaterium, C. michiganensis, F. johnsoniae, and P. putida. As has been reported for many grasses, we found considerable taxonomic diversity among the culturable bacterial populations from the rhizospheres of bentgrass and bermudagrass grown in sand-based putting greens.


Plant Disease ◽  
2021 ◽  
Author(s):  
Yuxin Zhou ◽  
Min Yin ◽  
Fei Liu

Creeping bentgrass (Agrostis stolonifera L.) is an important cool-season perennial turfgrass that has been widely used on golf courses across China. In July 2017, an unknown disease outbreak caused damages on seven of the 18 putting greens of creeping bentgrass at Jiuqiao golf club in Hangzhou city of Zhejiang province, day-time high temperatures were consistently above 35°C during the disease development. Symptoms appeared in tan irregular patches of 5 to 20-cm diameter, exhibiting chlorosis and foliar dieback in most part. Necrotic roots were frequently observed in diseased areas and colonized with ectotrophic hyphae under a microscope. Similar symptoms and signs were reported on creeping bentgrass caused by Magnaporthiopsis poae (Landschoot & Jackson) J. Luo & N. Zhang on golf courses in Beijing (Hu et al. 2017). Fifteen disease samples were collected from seven putting greens. Dark root tips were cut, surface sterilized in 0.6% sodium hypochlorite (NaClO) for 5 min, washed twice with sterilized water, air dried for 1 min and placed on potato dextrose agar (PDA) containing each of 50 mg L-1 ampicillin, streptomycin sulfate, and tetracycline. Plates were incubated in the dark at room temperature for 4 days, and 10 fungal isolates with similar morphology as described by Clarke and Gould (1993) were consistently recovered from the diseased root tips. DNA of two representative isolates was extracted and amplified with primers ITS 5/ITS 4 (White et al. 1990). PCR products were sequenced (deposited in GenBank as MZ895215 and MZ895216), and BLAST analysis showed 99.17% similarity to M. poae (accession number: DQ528765). Six plastic pots (15 cm height × 15 cm top diameter × 10 cm bottom diameter, three replicates for each isolate) were seeded with creeping bentgrass and placed in the greenhouse for two months of plant growth before inoculation. The pathogenic inoculum was prepared by inoculating autoclaved oat seeds with M. poae isolates, followed by two weeks of incubation at 25°C. About 25 mg M. poae-infested oat seeds were placed 10 cm below the soil surface in the root zone of creeping bentgrass. Non-infested oat seeds were inoculated on healthy creeping bentgrass as controls. Pots were placed in a growth chamber with a 12-h day/night cycle at 35/28°C and watered daily to keep high soil moisture. Disease symptoms (foliar dieback and necrotic roots) were noted 3 weeks after inoculation. M. poae was consistently recovered from the roots of inoculated turf and identified molecularly as described above, fulfilling Koch’s postulates. To our knowledge, this is the first report of summer patch on creeping bentgrass caused by M. poae in southeastern China. This research demonstrates a wider distribution of M. poae and will be an important step towards the development of management strategies for summer patch control in China.


HortScience ◽  
2005 ◽  
Vol 40 (1) ◽  
pp. 232-236 ◽  
Author(s):  
John E. Jordan ◽  
Richard H. White ◽  
James C. Thomas ◽  
Trent C. Hale ◽  
Donald M. Vietor

Proper water management is a major responsibility of managers of creeping bentgrass grown on putting greens in the hot and humid southern states. The combination of shallow root systems, sand-based root zones, high temperatures, and high evaporative demands frequently results in severe drought stress on bentgrass (Agrostis palustris Huds.) greens. This study was initiated to determine the effects of irrigation frequency on creeping bentgrass turgor pressure and on the O2 and CO2 concentrations in a sand-based root zone mixture. In total, 81 plots, 1.5 × 1.5 m each, were established on a USGA-type root zone mixture and organized into 9 groups of 9 plots each. Each group could be irrigated individually. One plot in each group was planted to either `A-4', `Crenshaw', `Mariner', `L-93', or `Penncross' creeping bentgrass. Irrigation frequency treatments of 1-, 2-, and 4-day replacement of historical PET were imposed on three groups each. After establishment, measurements of the leaf water potential, osmotic potential, soil oxygen concentration, and soil carbon dioxide concentrations were made over a 1- to 2-year period. Bentgrass irrigated every 1 or 2 days had significantly (P = 0.05) greater turgor pressures at 0600 hr as compared to turf irrigated every 4 days in 1997. No differences were seen in 1998 due to drier environmental conditions. Concentrations of O2 and CO2 in the soil air remained in the optimal range for all treatments, indicating that lack of O2 in the root zone as a result of frequent irrigation may not be the primary cause for reduced rooting depth of bentgrass grown on highly permeable sand-based root zone mixtures.


HortScience ◽  
2012 ◽  
Vol 47 (2) ◽  
pp. 205-211 ◽  
Author(s):  
John Watson ◽  
François Hébert ◽  
Eric M. Lyons ◽  
Theo Blom ◽  
Katerina S. Jordan

Two complementary greenhouse studies were conducted to examine the effects of different root zones and fertilization regimes on ‘SR7200' velvet bentgrass (Agrostis canina L.) and L-93 creeping bentgrass (Agrostis stolonifera L.). In the first study, in which only velvet bentgrass was studied, peat content in the root zone mixture contributed significantly to initial establishment of this species and high seeding rates increased cumulative shoot dry weight early in establishment but became less significant as the turfgrass matured. Higher phosphorus rates contributed to increased cumulative shoot dry weight over the first 4 weeks of the experiment. Nitrogen rate was the most significant factor positively affecting both cumulative shoot dry weight and turfgrass quality. In the second experiment with both velvet bentgrass and creeping bentgrass, nitrogen rate significantly increased turfgrass quality when measured at Week 5, halfway through the experiment. Over time, however, turf growth and quality were negatively impacted in both species with increasing nitrogen rates. Root zone composition had a significant effect on initial establishment of both bentgrasses with greater peat content leading to higher quality early on. Cumulative shoot dry weight increased with increasing nitrogen rate but at higher rates, there was a concomitant decrease in root production.


Plant Disease ◽  
2008 ◽  
Vol 92 (6) ◽  
pp. 862-869 ◽  
Author(s):  
J. P. Kerns ◽  
L. P. Tredway

Symptoms resembling Pythium root dysfunction have been observed on golf course putting greens established with creeping bentgrass across the southeastern United States since 2002. Root isolations from 14 golf courses yielded 59 isolates of Pythium volutum and 16 isolates of Pythium torulosum. Pathogenicity of five isolates of P. volutum, two isolates of P. torulosum, and a combination of the two species was determined by inoculating mature ‘A-1’ creeping bentgrass plants. Inoculated plants were incubated for 4 weeks at 24/16°C (day/night) to permit root infection, then temperatures were increased to 32/26°C to induce foliar symptoms. No isolates impacted root depth, root mass, or foliar disease severity after 4 weeks at 24/16°C. After increasing the temperature to 32/26°C, isolates of P. volutum induced foliar disease severity ranging from 60 to 84%, whereas isolates of P. torulosum induced only 14 to 35% disease. Isolates of P. volutum consistently reduced root mass and root depth after 4 weeks at 32/26°C, but P. torulosum exhibited no effect. These results demonstrate that P. volutum is a pathogen of mature creeping bentgrass plants. Infections that occur during cool weather reduce the growth and survival of creeping bentgrass roots during hot weather and give rise to foliar symptoms.


2009 ◽  
Vol 134 (1) ◽  
pp. 41-47 ◽  
Author(s):  
Jinmin Fu ◽  
Peter H. Dernoeden

Carbohydrates provide energy required to maintain healthy plant growth in summer. Coring is performed periodically on creeping bentgrass (Agrostis stolonifera L.) putting greens for numerous reasons; however, its impact on carbohydrate metabolism in creeping bentgrass is unknown. The objectives of this 2-year field study were to examine the effects of coring on rates of photosynthesis (Pn) and whole plant respiration (Rw), and to quantify water-soluble carbohydrates [WSC (i.e., glucose, fructose, and sucrose)], storage carbohydrates [SC (i.e., fructan and starch], and total nonstructural carbohydrates [TNC (i.e., WSC + SC)] in creeping bentgrass leaves and roots during the summer. The study site was ‘Providence’ creeping bentgrass grown on a sand-based root zone and was maintained as a putting green. Three coring treatments were assessed as follows: spring-only coring, spring plus three summer corings, and a noncored control. Pn and Rw were measured about 21 d following coring with hollow tines. Pn and Rw rates generally were similar among all three coring treatments in both years. Hence, summer coring had no apparent negative impact on Pn or Rw. Leaf and root WSC, SC, and TNC levels were similar among coring treatments throughout the summer of each year. However, root TNC levels were lower in July of each year in spring plus summer-cored bentgrass versus other coring treatments. By September, leaves and roots from spring plus summer-cored creeping bentgrass had higher TNC levels when compared with spring-only or noncored bentgrass. Leaf and root SC levels from spring plus summer-cored bentgrass were also higher in September than were observed in noncored bentgrass. Spring plus summer coring benefited creeping bentgrass by promoting an accumulation of carbohydrates in late summer, which could assist plants in their recovery from summer stresses.


Sign in / Sign up

Export Citation Format

Share Document