Interannual and decadal variability of landfalling tropical cyclones in the southeast coastal states of the united states

2002 ◽  
Vol 19 (4) ◽  
pp. 677-686 ◽  
Author(s):  
Li'an Xie ◽  
Leonard J. Pietrafesa ◽  
Kejian Wu
2019 ◽  
Vol 100 (8) ◽  
pp. 1405-1417 ◽  
Author(s):  
Thomas Jones ◽  
Patrick Skinner ◽  
Nusrat Yussouf ◽  
Kent Knopfmeier ◽  
Anthony Reinhart ◽  
...  

AbstractLandfalling tropical cyclones (TCs) are among the greatest natural threats to life and property in the United States, since they can produce multiple hazards associated with convective storms over a wide region. Of these hazards, tornadoes within TC rainbands pose a particularly difficult forecast problem owing to their rapid evolution and their frequent occurrence coincident with additional hazards, such as flash flooding and damaging winds. During the 2017 Atlantic hurricane season, Hurricanes Harvey and Irma impacted the continental United States, causing significant loss of life and billions of dollars in property damage. Application of the Warn-on-Forecast (WoF) concept of short-term, probabilistic guidance of convective hazards (Stensrud et al. 2009, 2013), including the potential for tornadoes within TCs, offers the ability to provide forecasters with valuable tools for prioritizing the relative risk from multiple convective threats and effectively communicating them to the public.


Author(s):  
Kirsten D. Orwig

Convective storms affect countries worldwide, with billions in losses and dozens of fatalities every year. They are now the key insured loss driver in the United States, even after considering the losses sustained by tropical cyclones in 2017. Since 2008, total insured losses from convective storms have exceeded $10 billion per year. Additionally, these losses continue to increase year over year. Key loss drivers include increased population, buildings, vehicles, and property values. However, other loss drivers relate to construction materials and practices, as well as building code adoption and enforcement. The increasing loss trends pose a number of challenges for the insurance industry and broader society. These challenges are discussed, and some recommendations are presented.


2016 ◽  
Author(s):  
Monica H. Stone ◽  
Sagy Cohen

Abstract. Recent tropical cyclones, like Hurricane Katrina, have been some of the worst the United States has experienced. Tropical cyclones are expected to intensify, bringing about 20 % more precipitation, in the near future in response to global climate warming. Further, global climate warming may extend the hurricane season. This study focuses on four major river basins (Neches, Pearl, Mobile, and Roanoke) in the Southeast United States that are frequently impacted by tropical cyclones. An analysis of the timing of tropical cyclones that impact these river basins found that most occur during the low discharge season, and thus rarely produce riverine flooding conditions. However, an extension of the current hurricane season of June–November, due to global climate warming, could encroach upon the high discharge seasons in these basins, increasing the susceptibility for riverine hurricane-induced flooding. This analysis shows that an extension of the hurricane season to May–December (just 2 months longer) increased the number of days that would be at risk to flooding were the average tropical cyclone to occur by 37–258 %, depending on the timing of the hurricane season in relation to the high discharge seasons on these rivers. Future research should aim to extend this analysis to all river basins in the United States that are impacted by tropical cyclones in order to provide a bigger picture of which areas are likely to experience the worst increases in flooding risk due to a probable extension of the hurricane season with expected global climate change in the near future.


Atmosphere ◽  
2020 ◽  
Vol 11 (7) ◽  
pp. 725
Author(s):  
Robert Mendelsohn ◽  
Liang Zheng

It is well known that seawalls are effective at stopping common storm surges in urban areas. This paper examines whether seawalls should be built to withstand the storm surge from a major tropical cyclone. We estimate the extra cost of building the wall tall enough to stop such surges and the extra flood benefit of this additional height. We estimate the surge probability distribution from six tidal stations spread along the Atlantic seaboard of the United States. We then measure how valuable the vulnerable buildings behind a 100 m wall must be to justify such a tall wall at each site. Combining information about the probability distribution of storm surge, the average elevation of protected buildings, and the damage rate at each building, we find that the value of protected buildings behind this 100 m wall must be in the hundreds of millions to justify the wall. We also examine the additional flood benefit and cost of protecting a km2 of land in nearby cities at each site. The density of buildings in coastal cities in the United States are generally more than an order of magnitude too low to justify seawalls this high. Seawalls are effective, but not at stopping the surge damage from major tropical cyclones.


2009 ◽  
Vol 26 (10) ◽  
pp. 2051-2070
Author(s):  
Courtney D. Buckley ◽  
Robbie E. Hood ◽  
Frank J. LaFontaine

Abstract Inland flooding from tropical cyclones is a significant factor in storm-related deaths in the United States and other countries, with the majority of tropical cyclone fatalities recorded in the United States resulting from freshwater flooding. Information collected during National Aeronautics and Space Administration (NASA) tropical cyclone field experiments suggests that surface water and flooding can be detected and therefore monitored at a greater spatial resolution by using passive microwave airborne radiometers than by using satellite sensors. The 10.7-GHz frequency of the NASA Advanced Microwave Precipitation Radiometer (AMPR) has demonstrated high-resolution detection of anomalous surface water and flooding in numerous situations. In this study, an analysis of three cases is conducted utilizing satellite and airborne radiometer data. Data from the 1998 Third Convection and Moisture Experiment (CAMEX-3) are utilized to detect surface water during the landfalling Hurricane Georges in both the Dominican Republic and Louisiana. Another case studied was the landfalling Tropical Storm Gert in eastern Mexico during the Tropical Cloud Systems and Processes (TCSP) experiment in 2005. AMPR data are compared to topographic data and vegetation indices to evaluate the significance of the surface water signature visible in the 10.7-GHz information. The results illustrate the AMPR’s utility in monitoring surface water that current satellite-based passive microwave radiometers are unable to monitor because of their coarser resolutions. This suggests the benefit of a radiometer with observing frequencies less than 11 GHz deployed on a manned aircraft or unmanned aircraft system to provide early detection in real time of expanding surface water or flooding conditions.


2017 ◽  
Vol 18 (4) ◽  
pp. 957-976 ◽  
Author(s):  
Ping Lu ◽  
James A. Smith ◽  
Ning Lin

Abstract A framework to characterize the distribution of flood magnitudes over large river networks is developed using the Delaware River basin in the northeastern United States as a principal study region. Flood magnitudes are characterized by the flood index, which is defined as the ratio of the flood peak for a flood event to the historical 10-yr flood magnitude. Event flood peaks are computed continuously over the drainage network using a distributed hydrologic model, CUENCAS, with high-resolution radar rainfall fields as the principal forcing. The historical 10-yr flood is calculated based on scaling relationships between the 10-yr flood and drainage area. Summary statistics for characterizing the probability distribution and spatial correlation of flood magnitudes over the drainage network are developed based on the flood index. This framework is applied to four flood events in the Delaware River basin that reflect the principal flood-generating mechanisms in the eastern United States: landfalling tropical cyclones (Hurricane Ivan in September 2004 and Hurricane Irene in August 2011), late winter/early spring extratropical systems (April 2005), and warm season convective systems (June 2006). The framework can be utilized to characterize the spatial distribution of floods, most notably for floods caused by landfalling tropical cyclones, which play an important role in controlling the upper tail of flood peak magnitudes over much of the eastern United States.


2005 ◽  
Vol 18 (8) ◽  
pp. 1247-1262 ◽  
Author(s):  
Joshua Larson ◽  
Yaping Zhou ◽  
R. Wayne Higgins

Abstract The climatology and interannual variability of landfalling tropical cyclones and their impacts on precipitation in the continental United States and Mexico are examined. The analysis is based on National Hurricane Center 6-hourly tropical cyclone track data for the Atlantic and eastern Pacific basins and gridded daily U.S. precipitation data for the period August–October 1950–98. Geographic maps of total tropical cyclone strike days, and the mean and maximum percentage of precipitation due to tropical cyclones, are examined by month. To make the procedures objective, it is assumed that precipitation is symmetric about the storm’s center. While this introduces some uncertainty in the analysis, sensitivity tests show that this assumption is reasonable for precipitation within 5° of the circulation center. The relationship between landfalling tropical cyclones and two leading patterns of interannual climate variability—El Niño–Southern Oscillation (ENSO) and the Arctic Oscillation (AO)—are then examined. Relationships between tropical cyclone frequency and intensity and composites of 200-hPa geopotential height and wind shear anomalies are also examined as a function of ENSO phase and AO phase using classifications devised at the Climate Prediction Center. The data show that tropical cyclone activity in the Atlantic basin is modulated on both seasonal and intraseasonal time scales by the AO and ENSO and that impact of the two modes of climate variability is greater together than apart. This suggests that, during La Niña conditions, atmospheric circulation is more conducive to activity in the main development region during AO-positive conditions than during AO-negative ones and that, during El Niño conditions, atmospheric circulation appears even less conducive to tropical cyclone development during the negative phase of the AO than during the positive phase.


Sign in / Sign up

Export Citation Format

Share Document