scholarly journals Complete functional recovery in a child after endovascular treatment of basilar artery occlusion caused by spontaneous dissection: a case report

Author(s):  
Ljubisa Borota ◽  
Sylvia Libard ◽  
Markus Fahlström ◽  
Francesco Latini ◽  
Erik Lundström

AbstractStroke caused by dissection of arteries of the vertebrobasilar system in children is still poorly investigated in terms of etiology, means of treatment, course of disease, and prognosis. The aim of this report was to describe the unusual course of a spontaneous dissection of the basilar artery (BA) in a child treated with endovascular techniques and to point out that the plasticity of the brain stem can fully compensate for structural damage caused by stroke. We report the case of a 15-year-old boy who suffered a wake-up stroke with BA occlusion caused by spontaneous dissection. A blood clot was aspirated from the false lumen and the true lumen re-opened, but the patient deteriorated a few hours later, and repeated angiography revealed that the intimal flap was detached, occluding the BA again. The lumen of BA was then reconstructed by a stent. Despite a large pons infarction, the patient was completely recovered 11 months after the onset. The case was analyzed with angiograms and magnetic resonance imaging, macroscopic and microscopic pathological analysis, computed tomographic angiography, magnetic resonance-based angiography, and diffusion tensor imaging. This case illustrates that applied endovascular techniques and intensive care measures can alter the course of potentially fatal brain stem infarction. Our multimodal analysis gives new insight into the anatomical basis for the plasticity mechanism of the brain stem.

1997 ◽  
Vol 17 (10) ◽  
pp. 1089-1096 ◽  
Author(s):  
Kazunori Toyoda ◽  
Kenichiro Fujii ◽  
Setsuro Ibayashi ◽  
Tetsuhiko Nagao ◽  
Takanari Kitazono ◽  
...  

We tested the hypothesis that nitric oxide (NO) plays a role in CBF autoregulation in the brain stem during hypotension. In anesthetized rats, local CBF to the brain stem was determined with laser-Doppler flowmetry, and diameters of the basilar artery and its branches were measured through an open cranial window during stepwise hemorrhagic hypotension. During topical application of 10−5 mol/L and 10−4 mol/L Nω-nitro-L-arginine (L-NNA), a nonselective inhibitor of nitric oxide synthase (NOS), CBF started to decrease at higher steps of mean arterial blood pressure in proportion to the concentration of L-NNA in stepwise hypotension (45 to 60 mm Hg in the 10−5 mol/L and 60 to 75 mm Hg in the 10−4 mol/L L-NNA group versus 30 to 45 mm Hg in the control group). Dilator response of the basilar artery to severe hypotension was significantly attenuated by topical application of L-NNA (maximum dilatation at 30 mm Hg: 16 ± 8% in the 10−5 mol/L and 12 ± 5% in the 10−4 mol/L L-NNA group versus 34 ± 4% in the control group), but that of the branches was similar between the control and L-NNA groups. Topical application of 10−5 mol/L 7-nitro indazole, a selective inhibitor of neuronal NOS, did not affect changes in CBF or vessel diameter through the entire pressure range. Thus, endothelial but not neuronal NO seems to take part in the regulation of CBF to the the brain stem during hypotension around the lower limits of CBF autoregulation. The role of NO in mediating dilatation in response to hypotension appears to be greater in large arteries than in small ones.


Hypertension ◽  
2020 ◽  
Vol 76 (5) ◽  
pp. 1480-1490 ◽  
Author(s):  
Lorenzo Carnevale ◽  
Angelo Maffei ◽  
Alessandro Landolfi ◽  
Giovanni Grillea ◽  
Daniela Carnevale ◽  
...  

Hypertension is one of the main risk factors for vascular dementia and Alzheimer disease. To predict the onset of these diseases, it is necessary to develop tools to detect the early effects of vascular risk factors on the brain. Resting-state functional magnetic resonance imaging can investigate how the brain modulates its resting activity and analyze how hypertension impacts cerebral function. Here, we used resting-state functional magnetic resonance imaging to explore brain functional-hemodynamic coupling across different regions and their connectivity in patients with hypertension, as compared to subjects with normotension. In addition, we leveraged multimodal imaging to identify the signature of hypertension injury on the brain. Our study included 37 subjects (18 normotensives and 19 hypertensives), characterized by microstructural integrity by diffusion tensor imaging and cognitive profile, who were subjected to resting-state functional magnetic resonance imaging analysis. We mapped brain functional connectivity networks and evaluated the connectivity differences among regions, identifying the altered connections in patients with hypertension compared with subjects with normotension in the (1) dorsal attention network and sensorimotor network; (2) dorsal attention network and visual network; (3) dorsal attention network and frontoparietal network. Then we tested how diffusion tensor imaging fractional anisotropy of superior longitudinal fasciculus correlates with the connections between dorsal attention network and default mode network and Montreal Cognitive Assessment scores with a widespread network of functional connections. Finally, based on our correlation analysis, we applied a feature selection to highlight those most relevant to describing brain injury in patients with hypertension. Our multimodal imaging data showed that hypertensive brains present a network of functional connectivity alterations that correlate with cognitive dysfunction and microstructural integrity. Registration— URL: https://www.clinicaltrials.gov ; Unique identifier: NCT02310217.


Author(s):  
Piotr Podwalski ◽  
Krzysztof Szczygieł ◽  
Ernest Tyburski ◽  
Leszek Sagan ◽  
Błażej Misiak ◽  
...  

Abstract Diffusion tensor imaging (DTI) is an imaging technique that uses magnetic resonance. It measures the diffusion of water molecules in tissues, which can occur either without restriction (i.e., in an isotropic manner) or limited by some obstacles, such as cell membranes (i.e., in an anisotropic manner). Diffusion is most often measured in terms of, inter alia, fractional anisotropy (FA), mean diffusivity (MD), radial diffusivity (RD), and axial diffusivity (AD). DTI allows us to reconstruct, visualize, and evaluate certain qualities of white matter. To date, many studies have sought to associate various changes in the distribution of diffusion within the brain with mental diseases and disorders. A better understanding of white matter integrity disorders can help us recognize the causes of diseases, as well as help create objective methods of psychiatric diagnosis, identify biomarkers of mental illness, and improve pharmacotherapy. The aim of this work is to present the characteristics of DTI as well as current research on its use in schizophrenia, affective disorders, and other mental disorders.


Spine ◽  
1991 ◽  
Vol 16 (7) ◽  
pp. 761-763 ◽  
Author(s):  
MAJ ALFRED E. GEISSELE ◽  
LTC MARK J. KRANSDORF ◽  
MAJ CARL A. GEYER ◽  
MAJ JAMES S. JELINEK ◽  
LTC BRUCE E. VAN DAM

1989 ◽  
Vol 11 (2) ◽  
pp. 155-161
Author(s):  
G. de Chambenoit ◽  
T. Njee Bugha ◽  
H. Duvernoy ◽  
G. Salamon

PLoS ONE ◽  
2013 ◽  
Vol 8 (6) ◽  
pp. e67630 ◽  
Author(s):  
Hans-Peter Müller ◽  
Jan Kassubek ◽  
Ina Vernikouskaya ◽  
Albert C. Ludolph ◽  
Detlef Stiller ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document