scholarly journals Magnetic resonance diffusion tensor imaging in psychiatry: a narrative review of its potential role in diagnosis

Author(s):  
Piotr Podwalski ◽  
Krzysztof Szczygieł ◽  
Ernest Tyburski ◽  
Leszek Sagan ◽  
Błażej Misiak ◽  
...  

Abstract Diffusion tensor imaging (DTI) is an imaging technique that uses magnetic resonance. It measures the diffusion of water molecules in tissues, which can occur either without restriction (i.e., in an isotropic manner) or limited by some obstacles, such as cell membranes (i.e., in an anisotropic manner). Diffusion is most often measured in terms of, inter alia, fractional anisotropy (FA), mean diffusivity (MD), radial diffusivity (RD), and axial diffusivity (AD). DTI allows us to reconstruct, visualize, and evaluate certain qualities of white matter. To date, many studies have sought to associate various changes in the distribution of diffusion within the brain with mental diseases and disorders. A better understanding of white matter integrity disorders can help us recognize the causes of diseases, as well as help create objective methods of psychiatric diagnosis, identify biomarkers of mental illness, and improve pharmacotherapy. The aim of this work is to present the characteristics of DTI as well as current research on its use in schizophrenia, affective disorders, and other mental disorders.

2009 ◽  
Vol 16 (2) ◽  
pp. 189-196 ◽  
Author(s):  
A. Feinstein ◽  
P. O'Connor ◽  
N. Akbar ◽  
L. Moradzadeh ◽  
CJM Scott ◽  
...  

Depression is common in patients with multiple sclerosis, but to date no studies have explored diffusion tensor imaging indices associated with mood change. This study aimed to determine cerebral correlates of depression in multiple sclerosis patients using diffusion tensor imaging. Sixty-two subjects with multiple sclerosis were assessed for depression with the Beck Depression Inventory (BDI-II). All subjects underwent magnetic resonance imaging. Whole brain and regional volumes were calculated for lesions (hyper/hypointense) and normal-appearing white and grey matter. Fractional anisotropy and mean diffusivity were calculated for each brain region. Magnetic resonance imaging comparisons were undertaken between depressed (Beck Depression Inventory ≥19) and non-depressed subjects. Depressed subjects (n = 30) had a higher hypointense lesion volume in the right medial inferior frontal region, a smaller normal-appearing white matter volume in the left superior frontal region, and lower fractional anisotropy and higher mean diffusivity in the left anterior temporal normal-appearing white matter and normal-appearing grey matter regions, respectively. Depressed subjects also had higher mean diffusivity in right inferior frontal hyperintense lesions. Magnetic resonance imaging variables contributed to 43% of the depression variance. We conclude that the presence of more marked diffusion tensor imaging abnormalities in the normal-appearing white matter and normal-appearing grey matter of depressed subjects highlights the importance of more subtle measures of structural brain change in the pathogenesis of depression.


Neurosurgery ◽  
2019 ◽  
Vol 84 (5) ◽  
pp. E273-E273
Author(s):  
Christopher Murphy ◽  
Erjon Agushi ◽  
Zhangjie Su ◽  
Rainer Hinz ◽  
Federico Roncaroli ◽  
...  

Abstract INTRODUCTION Gliomas are highly infiltrative primary brain tumours. Glioma infiltration is difficult to identify clinically using conventional diagnostic imaging. We used diffusion tensor imaging (DTI) to identify glioma infiltration in peritumour white matter (WM) and characterized differences between histological subtypes. METHODS We recruited 8 patients with a histological diagnosis of grade II or III glioma and 10 healthy controls. We compared fractional anisotropy (FA) maps of each patient against the control group using SPM8 (Matlab 2014a) to identify regions of glioma infiltration. The FA and mean diffusivity (MD) of formerly WM matter tumour regions, infiltrated WM and normal appearing WM were compared with a 2-sample t-test and characterized with respect to normal control data. RESULTS Our results have identified radiological evidence of infiltration in the peri-tumour WM of glioma patients. The infiltrated region of oligodendrogliomas extended further than that of astrocytomas. Oligodendrogliomas preferentially infiltrated larger WM tracts, whereas astrocytomas infiltrated more peripheral WM. In all grades, the 3 regions had significantly different diffusion parameters and there were significant differences between oligodendrogliomas and astrocytomas. CONCLUSION We identified previously unrecognized study wide significant changes in the peri-tumour WM of gliomas. Despite the known propensity of these tumours to infiltrate WM we found no significant DTI changes distant to the tumour. Our DTI results suggest oligodendrogliomas and astrocytomas demonstrate different infiltrative patterns, which highlights the need for astrocytomas and oligodendrogliomas to be studied separately.


2018 ◽  
Vol 2 (4) ◽  
pp. 177-179
Author(s):  
Niyazi Acer ◽  
Mehmet Sait Dundar ◽  
Serap Bastepe-Gray

Abstract The brain consist of about 75 percent water. Diffusion tensor imaging (DTI) is an advanced magnetic resonance (MR) technique imaging that has been developed for diagnostic and research in medicine. It can be use DTI tractography to better understand degenerating axons of white matter lesions in some neurological diseases such as MS, AD, trauma, cerebral ischemia, epilepsy, brain tumors and metabolic disorders.


2018 ◽  
Vol 5 (3) ◽  
pp. e443 ◽  
Author(s):  
Eero Rissanen ◽  
Jouni Tuisku ◽  
Tero Vahlberg ◽  
Marcus Sucksdorff ◽  
Teemu Paavilainen ◽  
...  

ObjectiveTo investigate the relationship of in vivo microglial activation to clinical and MRI parameters in MS.MethodsPatients with secondary progressive MS (n = 10) or relapsing-remitting MS (n = 10) and age-matched healthy controls (n = 17) were studied. Microglial activation was measured using PET and radioligand [11C](R)-PK11195. Clinical assessment and structural and quantitative MRI including diffusion tensor imaging (DTI) were performed for comparison.Results[11C](R)-PK11195 binding was significantly higher in the normal-appearing white matter (NAWM) of patients with secondary progressive vs relapsing MS and healthy controls, in the thalami of patients with secondary progressive MS vs controls, and in the perilesional area among the progressive compared with relapsing patients. Higher binding in the NAWM was associated with higher clinical disability and reduced white matter (WM) structural integrity, as shown by lower fractional anisotropy, higher mean diffusivity, and increased WM lesion load. Increasing age contributed to higher microglial activation in the NAWM among patients with MS but not in healthy controls.ConclusionsPET can be used to quantitate microglial activation, which associates with MS progression. This study demonstrates that increased microglial activity in the NAWM correlates closely with impaired WM structural integrity and thus offers one rational pathologic correlate to diffusion tensor imaging (DTI) parameters.


2009 ◽  
Vol 21 (7) ◽  
pp. 1406-1421 ◽  
Author(s):  
Elizabeth A. Olson ◽  
Paul F. Collins ◽  
Catalina J. Hooper ◽  
Ryan Muetzel ◽  
Kelvin O. Lim ◽  
...  

Healthy participants (n = 79), ages 9–23, completed a delay discounting task assessing the extent to which the value of a monetary reward declines as the delay to its receipt increases. Diffusion tensor imaging (DTI) was used to evaluate how individual differences in delay discounting relate to variation in fractional anisotropy (FA) and mean diffusivity (MD) within whole-brain white matter using voxel-based regressions. Given that rapid prefrontal lobe development is occurring during this age range and that functional imaging studies have implicated the prefrontal cortex in discounting behavior, we hypothesized that differences in FA and MD would be associated with alterations in the discounting rate. The analyses revealed a number of clusters where less impulsive performance on the delay discounting task was associated with higher FA and lower MD. The clusters were located primarily in bilateral frontal and temporal lobes and were localized within white matter tracts, including portions of the inferior and superior longitudinal fasciculi, anterior thalamic radiation, uncinate fasciculus, inferior fronto-occipital fasciculus, corticospinal tract, and splenium of the corpus callosum. FA increased and MD decreased with age in the majority of these regions. Some, but not all, of the discounting/DTI associations remained significant after controlling for age. Findings are discussed in terms of both developmental and age-independent effects of white matter organization on discounting behavior.


Sign in / Sign up

Export Citation Format

Share Document