scholarly journals Conductivity Imaging of the Brain Using Diffusion Tensor Magnetic Resonance Imaging

2004 ◽  
Vol 28 (4) ◽  
pp. 649-656 ◽  
Author(s):  
M. Sekino ◽  
K. Yamaguchi ◽  
N. Iriguchi ◽  
S. Ueno
Hypertension ◽  
2020 ◽  
Vol 76 (5) ◽  
pp. 1480-1490 ◽  
Author(s):  
Lorenzo Carnevale ◽  
Angelo Maffei ◽  
Alessandro Landolfi ◽  
Giovanni Grillea ◽  
Daniela Carnevale ◽  
...  

Hypertension is one of the main risk factors for vascular dementia and Alzheimer disease. To predict the onset of these diseases, it is necessary to develop tools to detect the early effects of vascular risk factors on the brain. Resting-state functional magnetic resonance imaging can investigate how the brain modulates its resting activity and analyze how hypertension impacts cerebral function. Here, we used resting-state functional magnetic resonance imaging to explore brain functional-hemodynamic coupling across different regions and their connectivity in patients with hypertension, as compared to subjects with normotension. In addition, we leveraged multimodal imaging to identify the signature of hypertension injury on the brain. Our study included 37 subjects (18 normotensives and 19 hypertensives), characterized by microstructural integrity by diffusion tensor imaging and cognitive profile, who were subjected to resting-state functional magnetic resonance imaging analysis. We mapped brain functional connectivity networks and evaluated the connectivity differences among regions, identifying the altered connections in patients with hypertension compared with subjects with normotension in the (1) dorsal attention network and sensorimotor network; (2) dorsal attention network and visual network; (3) dorsal attention network and frontoparietal network. Then we tested how diffusion tensor imaging fractional anisotropy of superior longitudinal fasciculus correlates with the connections between dorsal attention network and default mode network and Montreal Cognitive Assessment scores with a widespread network of functional connections. Finally, based on our correlation analysis, we applied a feature selection to highlight those most relevant to describing brain injury in patients with hypertension. Our multimodal imaging data showed that hypertensive brains present a network of functional connectivity alterations that correlate with cognitive dysfunction and microstructural integrity. Registration— URL: https://www.clinicaltrials.gov ; Unique identifier: NCT02310217.


PLoS ONE ◽  
2013 ◽  
Vol 8 (6) ◽  
pp. e67630 ◽  
Author(s):  
Hans-Peter Müller ◽  
Jan Kassubek ◽  
Ina Vernikouskaya ◽  
Albert C. Ludolph ◽  
Detlef Stiller ◽  
...  

Author(s):  
Jack M. Gorman

The blood–brain barrier vigorously limits what can get into and out of the brain, making our ability to understand brain function much more difficult than with any other organ in the body. The modern era of brain imaging began about a half-century ago with the introduction of computed axial tomography (CAT) and magnetic resonance imaging (MRI). Although CAT scanning shows brain structure in great detail and revolutionized the precision of medical diagnosis, including of brain disorders, it has had relatively little impact on psychiatry because most psychiatric illnesses do not involve visible abnormalities of the size, shape, or volume of brain structures. Similarly, although we have gained some insights from structural MRI, it primarily shows us the anatomy of the brain. Three other variants of MRI, however, have been extremely useful in studying psychiatric issues: functional magnetic resonance imaging, diffusion tensor imaging, and magnetic resonance spectroscopy.


2010 ◽  
Vol 2 (1) ◽  
pp. 17-24 ◽  
Author(s):  
K. M. Cecil

Advanced neuroimaging techniques offer unique insights into how childhood lead exposure impacts the brain. Volumetric magnetic resonance imaging affords anatomical information about the size of global, regional and subcomponent structures within the brain. Diffusion tensor imaging provides information about white matter architecture by quantitatively describing how water molecules diffuse within it. Proton magnetic resonance spectroscopy generates quantitative measures of neuronal, axonal and glial elements via concentration levels of select metabolites. Functional magnetic resonance imaging infers neuronal activity associated with a given task performed. Employing these techniques in the study of the Cincinnati Lead Study, a relatively homogeneous birth cohort longitudinally monitored for over 30 years, one can non-invasively and quantitatively explore how childhood lead exposure is associated with adult brain structure, organization and function. These studies yield important findings how environmental lead exposure impacts human health.


2021 ◽  
Vol 9 (1) ◽  
Author(s):  
Xuan Vinh To ◽  
Fatima A. Nasrallah

AbstractConcussion or mild traumatic brain injury is the most common form of traumatic brain injury with potentially long-term consequences. Current objective diagnosis and treatment options are limited to clinical assessment, cognitive rest, and symptom management, which raises the real danger of concussed patients being released back into activities where subsequent and cumulative injuries may cause disproportionate damages. This study conducted a cross-sectional multi-modal examination investigation of the temporal changes in behavioural and brain changes in a mouse model of concussion using magnetic resonance imaging. Sham and concussed mice were assessed at day 2, day 7, and day 14 post-sham or injury procedures following a single concussion event for motor deficits, psychological symptoms with open field assessment, T2-weighted structural imaging, diffusion tensor imaging (DTI), neurite orientation density dispersion imaging (NODDI), stimulus-evoked and resting-state functional magnetic resonance imaging (fMRI). Overall, a mismatch in the temporal onsets and durations of the behavioural symptoms and structural/functional changes in the brain was seen. Deficits in behaviour persisted until day 7 post-concussion but recovered at day 14 post-concussion. DTI and NODDI changes were most extensive at day 7 and persisted in some regions at day 14 post-concussion. A persistent increase in connectivity was seen at day 2 and day 14 on rsfMRI. Stimulus-invoked fMRI detected increased cortical activation at day 7 and 14 post-concussion. Our results demonstrate the capabilities of advanced MRI in detecting the effects of a single concussive impact in the brain, and highlight a mismatch in the onset and temporal evolution of behaviour, structure, and function after a concussion. These results have significant translational impact in developing methods for the detection of human concussion and the time course of brain recovery.


2016 ◽  
Vol 15 (11) ◽  
pp. 7227-7234
Author(s):  
Nourhan Zayed

Synathesia is a condition in which stimulation of a sensory modality triggers another sensation in the alike or an unalike sensory modality. Currently, synaesthesia is deemed a neurological condition that engages unwanted transfer of signals between brain regions from one sense to another “crosstalk activation”. The probability that undiagnosed synaesthesia may impact the results of structural magnetic resonance imaging (MRI), Diffusion Tensor imaging (DTI), functional magnetic resonance imaging (fMRI) and resting state connectivity studies is high, given the multiple anatomical and functional connections within the brain. In this paper, the currently available literature to mark which sensations adjured by synaesthesia and how could this impact MRI different modalities. Our study found that synaesthesia can have an opaque impact on fMRI studies of sensory, memory and cognitive functions, and there is testimony to suggest structural connections in the brain are also mutated DTI measurements especially, it shows enhanced structural connectivity for synesthetes between brain regions, higher Fractional anisotropy (FA), as well as increased in the white matter integrity between some regions.. Given the low dispersal of synaesthesia, the likelihood of synaesthesia being a perplexing factor in DTI, fMRI studies of patient groups is small; however, determining the existence of synaesthesia is paramount for investigating individual patients especially Shizoherenia, and autistic patients.


2011 ◽  
Vol 69 (2a) ◽  
pp. 242-252 ◽  
Author(s):  
Giuseppe Pastura ◽  
Paulo Mattos ◽  
Emerson Leandro Gasparetto ◽  
Alexandra Prufer de Queiroz Campos Araújo

Attention deficit hyperactivity disorder (ADHD) affects about 5% of school-aged child. Previous published works using different techniques of magnetic resonance imaging (MRI) have demonstrated that there may be some differences between the brain of people with and without this condition. This review aims at providing neurologists, pediatricians and psychiatrists an update on the differences between the brain of children with and without ADHD using advanced techniques of magnetic resonance imaging such as diffusion tensor imaging, brain volumetry and cortical thickness, spectroscopy and functional MRI. Data was obtained by a comprehensive, non-systematic review of medical literature. The regions with a greater number of abnormalities are splenium of the corpus callosum, cingulated girus, caudate nucleus, cerebellum, striatum, frontal and temporal cortices. The brain regions where abnormalities are observed in studies of diffusion tensor, volumetry, spectroscopy and cortical thickness are the same involved in neurobiological theories of ADHD coming from studies with functional magnetic resonance imaging.


2021 ◽  
Vol 25 (3) ◽  
pp. 527-540
Author(s):  
Babak Masoudi ◽  
Sabalan Daneshvar ◽  
Seyed Naser Razavi

Early and precise diagnosis of schizophrenia disorder (SZ) has an essential role in the quality of a patient’s life and future treatments. Structural and functional neuroimaging provides robust biomarkers for understanding the anatomical and functional changes associated with SZ. Each of the neuroimaging techniques shows only a different perspective on the functional or structural of the brain, while multi-modal fusion can reveal latent connections in the brain. In this paper, we propose an approach for the fusion of structural and functional brain data with a deep learning-based model to take advantage of data fusion and increase the accuracy of schizophrenia disorder diagnosis. The proposed method consists of an architecture of 3D convolutional neural networks (CNNs) that applied to magnetic resonance imaging (MRI), functional magnetic resonance imaging (fMRI), and diffusion tensor imaging (DTI) extracted features. We use 3D MRI patches, fMRI spatial independent component analysis (ICA) map, and DTI fractional anisotropy (FA) as model inputs. Our method is validated on the COBRE dataset, and an average accuracy of 99.35% is obtained. The proposed method demonstrates promising classification performance and can be applied to real data.


2021 ◽  
pp. 95-115
Author(s):  
A. S. Filatov ◽  
E. I. Kremneva ◽  
M. S. Matrosova ◽  
V. V. Trubitsyna ◽  
L. A. Dobrynina ◽  
...  

Diffusion-tensor magnetic resonance imaging (DT-MRI) allows imaging of most brain pathways, quantifying their integrity and even suggesting a leading mechanism of damage (demyelination or ischemia). However, it is difficult to use this technique without a good knowledge of the anatomy. This article provides an overview of the literature on the structure and function of the main brain pathways.


Sign in / Sign up

Export Citation Format

Share Document