Simulated interannual variation in summertime atmospheric circulation associated with the East Asian monsoon

2007 ◽  
Vol 31 (4) ◽  
pp. 435-447 ◽  
Author(s):  
Miki Arai ◽  
Masahide Kimoto
2000 ◽  
Vol 24 (1) ◽  
pp. 75-96 ◽  
Author(s):  
Chun Chang Huang ◽  
Jiangli Pang ◽  
Jingpo Zhao

The history of the east Asian monsoon has been reconstructed from proxy records from the aeolian loess-palaeosol sequence in the Loess Plateau. It has been suggested that the monsoonal atmospheric circulation was initiated abruptly at 2.6 M yr BP. From about 1.2 M yrBP, the climate was characterized by contrasts between dry-cold periods brought on by the northwesterly monsoon and humid-warm periods brought about by the southeasterly monsoon. The periodic changes related to the earth’s orbital cycles have been clearly identified. Since about 0.6 M yr BP, the monsoonal climatic variations have become extremely pronounced and these correlate well with the marine isotope stages. The three-step shift in the east Asian monsoon towards greater variation seems to have been caused by the accelerated uplifting of the Tibetan Plateau. Climatic change during the last interglacial-glacial cycle recorded in the loess seems to match the SPECMAP δ18O record exactly. Six episodes of extremely strong dustfall events (brought on by the strengthened northwesterly monsoon winds) have been identified during the last glaciation. The ages of these episodes seem to match the Heinrich events in the North Atlantic and the Dansgaard-Oeschger events in Greenland. It is therefore suggested that the atmospheric circulation in east Asia is very sensitive to climatic change in high latitudes and has been responsive to global climatic change over the last 2.6 M yr. Millennial-scale climatic variations have also been identified in the Holocene loess. The article concludes by suggesting areas of research that might be undertaken in order to improve our understanding of the Chinese loess and of the evolution of the east Asian monsoon.


2016 ◽  
Vol 29 (4) ◽  
pp. 1339-1352 ◽  
Author(s):  
Zhongyin Cai ◽  
Lide Tian

ABSTRACT Understanding variations in isotopic composition of precipitation from monsoon regions is crucial for its utilization in paleoclimate studies. This study explores the relationship between precipitation δ18O data for the East Asian monsoon (EAM) region archived in Global Network for Isotopes in Precipitation (GNIP) and the cloud data archived in ISCCP and their linkage with large-scale atmospheric circulation patterns. Results show that precipitation δ18O are significantly and positively correlated with cloud-top pressure (CTP) on both local and regional scales. Mechanically speaking, the stronger the monsoon convection precipitation, the higher the cloud and the lower the condensation temperature and thus the lower the precipitation δ18O. This result implies that the sharp drop in precipitation δ18O in the early summer in monsoonal Asia is related to the atmospheric circulation pattern rather than the different moisture sources, as was previously assumed. This result helps explain the processes leading to the observed “amount effect.” A comparison of atmospheric circulation patterns with precipitation δ18O on an interannual scale shows that the positive CTP anomalies in the central Indo-Pacific within the weak Walker circulation (El Niño) can be associated with positive δ18O anomalies, while negative CTP anomalies in the central Indo-Pacific within the strong Walker circulation (La Niña) can be linked to negative δ18O anomalies. This result further confirms the aforementioned conclusion. This is important for understanding paleoclimatic change in monsoonal Asia, as interannual variations in stable isotopes in that region have received less attention in the past.


The Holocene ◽  
2021 ◽  
pp. 095968362199466
Author(s):  
Nannan Li ◽  
Arash Sharifi ◽  
Frank M Chambers ◽  
Yong Ge ◽  
Nathalie Dubois ◽  
...  

High-resolution proxy-based paleoenvironmental records derived from peatlands provide important insights into climate changes over centennial to millennial timescales. In this study, we present a composite climatic index (CCI) for the Hani peatland from northeastern China, based on an innovative combination of pollen-spore, phytolith, and grain size data. We use the CCI to reconstruct variations of the East Asian summer monsoon (EASM) intensity during the Holocene. This is accomplished with complete ensemble empirical mode decomposition (CEEMD), REDFIT, and cross-wavelet coherency analysis to reveal the periodicities (frequencies) of the multi-proxy derived CCI sequences and to assess potential external forcing of the EASM. The results showed that periodicities of ca. 300–350, 475, 600, 1075, and 1875 years were present in the Hani CCI sequence. Those periodicities are consistent with previously published periodicities in East Asia, indicating they are a product of external climate controls over an extensive region, rather than random variations caused by peatland-specific factors. Cross-wavelet coherency analysis between the decomposed CCI components and past solar activity reconstructions suggests that variations of solar irradiation are most likely responsible for the cyclic characteristics at 500-year frequency. We propose a conceptual model to interpret how the sun regulates the monsoon climate via coupling with oceanic and atmospheric circulations. It seems that slight solar irradiation changes can be amplified by coupling with ENSO events, which result in a significant impact on the regional climate in the East Asian monsoon area.


2021 ◽  
Vol 13 (9) ◽  
pp. 4848
Author(s):  
Liwei Wu ◽  
Xinling Li ◽  
Qinghai Xu ◽  
Manyue Li ◽  
Qiufeng Zheng ◽  
...  

The East Asian monsoon system is an important part of global atmospheric circulation; however, records of the East Asian monsoon from different regions exhibit different evolutionary rhythms. Here, we show a high-resolution record of grain size and pollen data from a lacustrine sediment core of Dajiuhu Lake in Shennongjia, Hubei Province, China, in order to reconstruct the paleovegetation and paleoeclimate evolution of the Dajiuhu Basin since the late Middle Pleistocene (~237.9 ka to the present). The results show that grain size and pollen record of the core DJH-2 are consistent with the δ18O record of stalagmites from Sanbao Cave in the same area, which is closely related to the changes of insolation at the precessional (~20-kyr) scale in the Northern Hemisphere. This is different from the records of the Asian summer monsoon recorded in the Loess Plateau of North China, which exhibited dominant 100-kyr change cyclicities. We suggest that the difference between paleoclimatic records from North and South China is closely related to the east–west-oriented mountain ranges of the Qinling Mountains in central China that blocked weakened East Asia summer monsoons across the mountains during glacial periods.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
James R. Thomson ◽  
Philip B. Holden ◽  
Pallavi Anand ◽  
Neil R. Edwards ◽  
Cécile A. Porchier ◽  
...  

AbstractAsian Monsoon rainfall supports the livelihood of billions of people, yet the relative importance of different drivers remains an issue of great debate. Here, we present 30 million-year model-based reconstructions of Indian summer monsoon and South East Asian monsoon rainfall at millennial resolution. We show that precession is the dominant direct driver of orbital variability, although variability on obliquity timescales is driven through the ice sheets. Orographic development dominated the evolution of the South East Asian monsoon, but Indian summer monsoon evolution involved a complex mix of contributions from orography (39%), precession (25%), atmospheric CO2 (21%), ice-sheet state (5%) and ocean gateways (5%). Prior to 15 Ma, the Indian summer monsoon was broadly stable, albeit with substantial orbital variability. From 15 Ma to 5 Ma, strengthening was driven by a combination of orography and glaciation, while closure of the Panama gateway provided the prerequisite for the modern Indian summer monsoon state through a strengthened Atlantic meridional overturning circulation.


Atmosphere ◽  
2021 ◽  
Vol 12 (2) ◽  
pp. 140
Author(s):  
Wenping Jiang ◽  
Gen Li ◽  
Gongjie Wang

El Niño events vary from case to case with different decaying paces. In this study, we demonstrate that the different El Niño decaying paces have distinct impacts on the East Asian monsoon circulation pattern during post-El Niño summers. For fast decaying (FD) El Niño summers, a large-scale anomalous anticyclone dominates over East Asia and the North Pacific from subtropical to mid-latitude; whereas, the East Asian monsoon circulation display a dipole pattern with anomalous northern cyclone and southern anticyclone for slow decaying (SD) El Niño summers. The difference in anomalous East Asian monsoon circulation patterns was closely associated with the sea surface temperature (SST) anomaly patterns in the tropics. In FD El Niño summers, the cold SST anomalies in the tropical central-eastern Pacific and warm SST anomalies in the Maritime Continent induce the anticyclone anomalies over the Northwest Pacific. In contrast, the warm Kelvin wave anchored over the tropical Indian Ocean during SD El Niño summers plays a crucial role in sustaining the anticyclone anomalies over the Northwest Pacific. In particular, the opposite atmospheric circulation anomaly patterns over Northeast Asia and the mid-latitude North Pacific are mainly modulated by the stationary Rossby wave trains triggered by the opposite SST anomalies in the tropical eastern Pacific during FD and SD El Niño summers. Finally, the effect of distinct summer monsoon circulation patterns associated with the El Niño decay pace on the summer climate over East Asia are also discussed.


Sign in / Sign up

Export Citation Format

Share Document