scholarly journals The relative contributions of radiative forcing and internal climate variability to the late 20th Century winter drying of the Mediterranean region

2011 ◽  
Vol 38 (9-10) ◽  
pp. 2001-2015 ◽  
Author(s):  
Colin Kelley ◽  
Mingfang Ting ◽  
Richard Seager ◽  
Yochanan Kushnir
2021 ◽  
Author(s):  
Ece Yavuzsoy ◽  
Yasemin Ezber ◽  
Omer Lutfi Sen

<p>El Nino Southern Oscillation (ENSO) is a phenomenon in the equatorial Pacific that could have profound effects on climate around the world. Although ENSO impacts are fairly well-defined for south and north America, Australia and south-eastern Asia, they are not very clear for Euro-Mediterranean region. Some studies indicate that the negative phase of ENSO in Nino3 and Nino3.4 indices have similar effects in the negative phase of North Atlantic Oscillation (NAO).  ENSO impacts and teleconnection patterns are mostly studied using the Nino3.4 index. However, some recent studies indicate that the Nino1+2 index has higher correlation with climate variability over the Euro-Mediterranean region.</p><p>In this study, we investigate impacts of ENSO over the Euro-Mediterranean climate variability and atmospheric dynamics using the Nino1+2 and Nino3.4 indices. Additionally, we also tried to understand if there is any relation between ENSO and the Mediterranean and East Asian troughs. NCEP/NCAR Reanalysis surface air temperature, precipitation and 500 hPa geopotential height datasets and SST-based ENSO indices from ERSSTv4 were used in the analysis for boreal winter (December-January-February) for a period of 1950 - 2019. We utilized the Pearson correlation analysis to reveal the relation between these indices and climate parameters and the composite analysis  to define the pattern differences between the cold and warm phases of the indices.</p><p>Our preliminary findings show that there is a distinct correlation pattern between Nino indices and surface air temperature over the region of interest. Nino1+2 index has a more distinct dipole pattern with a significant positive correlation pole over central Europe and negative pole over north-eastern Africa. However, Nino3.4 indicates a rather zonal correlation dipole pattern whose poles are over northwest Africa (strongly positive) and northeast Africa (negative). It is also found that the Mediterranean trough location is sensitive to the phase of ENSO for both indices. Namely, the Mediterranean trough tends to be in the west of its climatological location for La Nina phases of Nino1+2 and Nino3.4, which affects the distribution of surface temperature and precipitation over the Euro-Mediterranean and Middle East and Northern Africa (MENA) regions. We concluded that the La Nina phase of Nino1+2 seems to play a more distinctive role in the dipole pattern. The surface air temperature is colder over the entire Europe while it is opposite in the Middle East region including Turkey. This dipole pattern is also detected for the La Nina phase of Nino3.4, but it is mostly observed over southwestern Europe and northern Africa. Comparison between the La Nina and El Nino phases of the Nino1+2 index indicates that for the La Nina phase precipitation is larger over the Aegean Sea and Italy and smaller in northern Europe.</p>


2019 ◽  
Vol 12 (7) ◽  
pp. 2727-2765 ◽  
Author(s):  
Hiroaki Tatebe ◽  
Tomoo Ogura ◽  
Tomoko Nitta ◽  
Yoshiki Komuro ◽  
Koji Ogochi ◽  
...  

Abstract. The sixth version of the Model for Interdisciplinary Research on Climate (MIROC), called MIROC6, was cooperatively developed by a Japanese modeling community. In the present paper, simulated mean climate, internal climate variability, and climate sensitivity in MIROC6 are evaluated and briefly summarized in comparison with the previous version of our climate model (MIROC5) and observations. The results show that the overall reproducibility of mean climate and internal climate variability in MIROC6 is better than that in MIROC5. The tropical climate systems (e.g., summertime precipitation in the western Pacific and the eastward-propagating Madden–Julian oscillation) and the midlatitude atmospheric circulation (e.g., the westerlies, the polar night jet, and troposphere–stratosphere interactions) are significantly improved in MIROC6. These improvements can be attributed to the newly implemented parameterization for shallow convective processes and to the inclusion of the stratosphere. While there are significant differences in climates and variabilities between the two models, the effective climate sensitivity of 2.6 K remains the same because the differences in radiative forcing and climate feedback tend to offset each other. With an aim towards contributing to the sixth phase of the Coupled Model Intercomparison Project, designated simulations tackling a wide range of climate science issues, as well as seasonal to decadal climate predictions and future climate projections, are currently ongoing using MIROC6.


2014 ◽  
Vol 14 (8) ◽  
pp. 3969-3975 ◽  
Author(s):  
Q. Yang ◽  
C. M. Bitz ◽  
S. J. Doherty

Abstract. We examine the impacts of atmospheric aerosols on Arctic and global climate using a series of 20th century transient simulations from Community Climate System Model version 4 (CCSM4). We focus on the response of surface air temperature to the direct radiative forcing driven by changes in sulfate and black carbon (BC) concentrations from 1975 to 2005 and we also examine the response to changes in sulfate, BC, and organic carbon (OC) aerosols collectively. The direct forcing from sulfate dominates the aerosol climate effect. Globally averaged, simultaneous changes in all three aerosols produce a cooling trend of 0.015 K decade−1 during the period 1975–2005. In the Arctic, surface air temperature has large spatial variations in response to changes in aerosol concentrations. Over the European Arctic, aerosols induce about 0.6 K decade−1 warming, which is about 1.8 K warming over the 30-year period. This warming is triggered mainly by the reduction in sulfate and BC emissions over Europe since the 1970s and is reinforced by sea ice loss and a strengthening in atmospheric northward heat transport. Changes in sulfate concentrations account for about two thirds of the warming and BC for the remaining one third. Over the Siberian and North American Arctic, surface air temperature is likely influenced by changes in aerosol concentrations over Asia. An increase in sulfate optical depth over Asia induces a large cooling while an increase in BC over Asia causes a significant warming.


2012 ◽  
Vol 9 (12) ◽  
pp. 13773-13803 ◽  
Author(s):  
B. Orlowsky ◽  
S. I. Seneviratne

Abstract. Recent years have seen a number of severe droughts in different regions around the world, causing agricultural and economic losses, famines and migration. Despite their devastating consequences, the Standardised Precipitation Index (SPI) of these events lies within the range of internal climate variability, which we estimate from simulations from the 5th phase of the Coupled Model Intercomparison Project (CMIP5). In terms of drought magnitude, regional trends of SPI over the last decades remain mostly inconclusive in observations and CMIP5 simulations, although Soil Moisture Anomalies (SMAs) in CMIP5 simulations hint at increased drought in a few regions (e.g. the Mediterranean, Central America/Mexico, the Amazon, North-East Brazil and South Africa). Also for the future, projections of meteorological (SPI) and agricultural (SMA) drought in CMIP5 display large uncertainties over all time frames, generally impeding trend detection. Analogue analyses of the frequencies rather than magnitudes of future drought display, however, more robust signal-to-noise ratios with detectable trends towards more frequent drought until the end of the 21st century in the Mediterranean, South Africa and Central America/Mexico. Other present-day hot spots are projected to become less drought-prone, or to display unsignificant changes in drought occurrence. A separation of different sources of uncertainty in drought projections reveals that for the near term, internal climate variability is the dominant source, while the formulation of Global Climate Models (GCMs) generally becomes the dominant source of uncertainty by the end of the 21st century, especially for agricultural (soil moisture) drought. In comparison, the uncertainty in Green-House Gas (GHG) concentrations scenarios is negligible for most regions. These findings stand in contrast to respective analyses for a heat wave indicator, for which GHG concentrations scenarios constitute the main source of uncertainty. Our results highlight the inherent difficulty of drought quantification and the uncertainty of drought projections. However, high uncertainty should not be equated with low drought risk, since potential scenarios include large drought increases in key agricultural and ecosystem regions.


2013 ◽  
Vol 13 (11) ◽  
pp. 30929-30943
Author(s):  
Q. Yang ◽  
C. M. Bitz ◽  
S. J. Doherty

Abstract. We examine the impacts of atmospheric aerosols on Arctic and global climate using a series of 20th century transient simulations from Community Climate System Model version 4 (CCSM4). We focus on the response of surface air temperature to the direct radiative forcing driven by changes in sulfate and black carbon (BC) concentrations from 1975 to 2005 and we also examine the response to sulfate, BC, and organic carbon aerosols varying at once. The direct forcing from sulfate dominates the aerosol climate effect. Globally averaged, all three aerosols produce a cooling trend of 0.015 K decade−1 during the period 1975–2005. In the Arctic, surface air temperature has large spatial variations in response to changes in aerosol concentrations. Over the European Arctic, aerosols induce about 0.6 K decade−1 warming which is about 1.8 K warming over the 30 yr period. This warming is triggered mainly by the reduction in sulfate and BC emissions over Europe since the 1970s and is reinforced by sea ice loss and a strengthening in atmospheric northward heat transport. Over the Siberian and North American Arctic, surface air temperature is likely influenced primarily by changes in aerosol emissions from Asia. An increase in sulfate emissions over Asia induces a large cooling while an increase in BC over Asia causes a significant warming.


2015 ◽  
Vol 15 (6) ◽  
pp. 3303-3326 ◽  
Author(s):  
P. Nabat ◽  
S. Somot ◽  
M. Mallet ◽  
M. Michou ◽  
F. Sevault ◽  
...  

Abstract. The present study investigates the radiative effects of dust aerosols in the Mediterranean region during summer 2012 using a coupled regional aerosol–atmosphere–ocean model (CNRM-RCSM5). A prognostic aerosol scheme, including desert dust, sea salt, organic, black-carbon and sulphate particles, has been integrated to CNRM-RCSM5 in addition to the atmosphere, land surface and ocean components. An evaluation of this aerosol scheme of CNRM-RCSM5, and especially of the dust aerosols, has been performed against in situ and satellite measurements, showing its ability to reproduce the spatial and temporal variability of aerosol optical depth (AOD) over the Mediterranean region in summer 2012. The dust vertical and size distributions have also been evaluated against observations from the TRAQA/ChArMEx campaign. Three simulations have been carried out for summer 2012 with CNRM-RCSM5, including the full prognostic aerosol scheme, only monthly-averaged AOD means from the aerosol scheme or no aerosols at all, in order to focus on the radiative effects of dust particles and the role of the prognostic scheme. Surface short-wave aerosol radiative forcing variability is found to be more than twice as high over regions affected by dust aerosols, when using a prognostic aerosol scheme instead of monthly AOD means. In this case downward surface solar radiation is also found to be better reproduced according to a comparison with several stations across the Mediterranean. A composite study over 14 stations across the Mediterranean, designed to identify days with high dust AOD, also reveals the improvement of the representation of surface temperature brought by the use of the prognostic aerosol scheme. Indeed the surface receives less radiation during dusty days, but only the simulation using the prognostic aerosol scheme is found to reproduce the observed intensity of the dimming and warming on dusty days. Moreover, the radiation and temperature averages over summer 2012 are also modified by the use of prognostic aerosols, mainly because of the differences brought in short-wave aerosol radiative forcing variability. Therefore this first comparison over summer 2012 highlights the importance of the choice of the representation of aerosols in climate models.


Sign in / Sign up

Export Citation Format

Share Document