ENSO related SST anomalies and relation with surface heat fluxes over south Pacific and Atlantic

2016 ◽  
Vol 49 (1-2) ◽  
pp. 391-401 ◽  
Author(s):  
S. Chatterjee ◽  
M. Nuncio ◽  
K. Satheesan
2006 ◽  
Vol 36 (7) ◽  
pp. 1317-1331 ◽  
Author(s):  
Ariane Verdy ◽  
John Marshall ◽  
Arnaud Czaja

Abstract The spatial and temporal distributions of sea surface temperature (SST) anomalies in the Antarctic Circumpolar Current (ACC) are investigated, using monthly data from the NCEP–NCAR reanalysis for the period 1980–2004. Patterns of atmospheric forcing are identified in observations of sea level pressure and air–sea heat fluxes. It is found that a significant fraction of SST variability in the ACC can be understood as a linear response to surface forcing by the Southern Annular Mode (SAM) and remote forcing by ENSO. The physical mechanisms rely on the interplay between atmospheric variability and mean advection by the ACC. SAM and ENSO drive a low-level anomalous circulation pattern localized over the South Pacific Ocean, inducing surface heat fluxes and Ekman heat advection anomalies. A simple model of SST propagating in the ACC, forced with heat fluxes estimated from the reanalysis, suggests that surface heat fluxes and Ekman heat advection are equally important in driving the observed SST variability. Further diagnostics indicate that SST anomalies, generated mainly upstream of Drake Passage, are subsequently advected by the ACC and damped after a couple of years. It is suggested that SST variability along the path of the ACC is largely a passive response of the oceanic mixed layer to atmospheric forcing.


2006 ◽  
Vol 19 (5) ◽  
pp. 698-722 ◽  
Author(s):  
Andrew T. Wittenberg ◽  
Anthony Rosati ◽  
Ngar-Cheung Lau ◽  
Jeffrey J. Ploshay

Abstract Multicentury integrations from two global coupled ocean–atmosphere–land–ice models [Climate Model versions 2.0 (CM2.0) and 2.1 (CM2.1), developed at the Geophysical Fluid Dynamics Laboratory] are described in terms of their tropical Pacific climate and El Niño–Southern Oscillation (ENSO). The integrations are run without flux adjustments and provide generally realistic simulations of tropical Pacific climate. The observed annual-mean trade winds and precipitation, sea surface temperature, surface heat fluxes, surface currents, Equatorial Undercurrent, and subsurface thermal structure are well captured by the models. Some biases are evident, including a cold SST bias along the equator, a warm bias along the coast of South America, and a westward extension of the trade winds relative to observations. Along the equator, the models exhibit a robust, westward-propagating annual cycle of SST and zonal winds. During boreal spring, excessive rainfall south of the equator is linked to an unrealistic reversal of the simulated meridional winds in the east, and a stronger-than-observed semiannual signal is evident in the zonal winds and Equatorial Undercurrent. Both CM2.0 and CM2.1 have a robust ENSO with multidecadal fluctuations in amplitude, an irregular period between 2 and 5 yr, and a distribution of SST anomalies that is skewed toward warm events as observed. The evolution of subsurface temperature and current anomalies is also quite realistic. However, the simulated SST anomalies are too strong, too weakly damped by surface heat fluxes, and not as clearly phase locked to the end of the calendar year as in observations. The simulated patterns of tropical Pacific SST, wind stress, and precipitation variability are displaced 20°–30° west of the observed patterns, as are the simulated ENSO teleconnections to wintertime 200-hPa heights over Canada and the northeastern Pacific Ocean. Despite this, the impacts of ENSO on summertime and wintertime precipitation outside the tropical Pacific appear to be well simulated. Impacts of the annual-mean biases on the simulated variability are discussed.


2017 ◽  
Vol 37 (14) ◽  
pp. 4757-4767 ◽  
Author(s):  
Cunbo Han ◽  
Yaoming Ma ◽  
Xuelong Chen ◽  
Zhongbo Su

2021 ◽  
Vol 149 (5) ◽  
pp. 1517-1534
Author(s):  
Benjamin Jaimes de la Cruz ◽  
Lynn K. Shay ◽  
Joshua B. Wadler ◽  
Johna E. Rudzin

AbstractSea-to-air heat fluxes are the energy source for tropical cyclone (TC) development and maintenance. In the bulk aerodynamic formulas, these fluxes are a function of surface wind speed U10 and air–sea temperature and moisture disequilibrium (ΔT and Δq, respectively). Although many studies have explained TC intensification through the mutual dependence between increasing U10 and increasing sea-to-air heat fluxes, recent studies have found that TC intensification can occur through deep convective vortex structures that obtain their local buoyancy from sea-to-air moisture fluxes, even under conditions of relatively low wind. Herein, a new perspective on the bulk aerodynamic formulas is introduced to evaluate the relative contribution of wind-driven (U10) and thermodynamically driven (ΔT and Δq) ocean heat uptake. Previously unnoticed salient properties of these formulas, reported here, are as follows: 1) these functions are hyperbolic and 2) increasing Δq is an efficient mechanism for enhancing the fluxes. This new perspective was used to investigate surface heat fluxes in six TCs during phases of steady-state intensity (SS), slow intensification (SI), and rapid intensification (RI). A capping of wind-driven heat uptake was found during periods of SS, SI, and RI. Compensation by larger values of Δq > 5 g kg−1 at moderate values of U10 led to intense inner-core moisture fluxes of greater than 600 W m−2 during RI. Peak values in Δq preferentially occurred over oceanic regimes with higher sea surface temperature (SST) and upper-ocean heat content. Thus, increasing SST and Δq is a very effective way to increase surface heat fluxes—this can easily be achieved as a TC moves over deeper warm oceanic regimes.


2010 ◽  
Vol 24 (4) ◽  
pp. 845-849 ◽  
Author(s):  
M. Ajith ◽  
Ranjan Das ◽  
Ramgopal Uppaluri ◽  
Subhash C. Mishra

Author(s):  
Muhammad ◽  
R I Lestari ◽  
F Mulia ◽  
Y Ilhamsyah ◽  
Z Jalil ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document