scholarly journals Western US high June 2015 temperatures and their relation to global warming and soil moisture

2017 ◽  
Vol 50 (7-8) ◽  
pp. 2587-2601 ◽  
Author(s):  
Sjoukje Y. Philip ◽  
Sarah F. Kew ◽  
Mathias Hauser ◽  
Benoit P. Guillod ◽  
Adriaan J. Teuling ◽  
...  
2017 ◽  
Vol 50 (7-8) ◽  
pp. 2603-2604
Author(s):  
Sjoukje Y. Philip ◽  
Sarah F. Kew ◽  
Mathias Hauser ◽  
Benoit P. Guillod ◽  
Adriaan J. Teuling ◽  
...  

Atmosphere ◽  
2018 ◽  
Vol 9 (12) ◽  
pp. 465 ◽  
Author(s):  
Kiwamu Ishikura ◽  
Untung Darung ◽  
Takashi Inoue ◽  
Ryusuke Hatano

This study investigated spatial factors controlling CO2, CH4, and N2O fluxes and compared global warming potential (GWP) among undrained forest (UDF), drained forest (DF), and drained burned land (DBL) on tropical peatland in Central Kalimantan, Indonesia. Sampling was performed once within two weeks in the beginning of dry season. CO2 flux was significantly promoted by lowering soil moisture and pH. The result suggests that oxidative peat decomposition was enhanced in drier position, and the decomposition acidify the peat soils. CH4 flux was significantly promoted by a rise in groundwater level, suggesting that methanogenesis was enhanced under anaerobic condition. N2O flux was promoted by increasing soil nitrate content in DF, suggesting that denitrification was promoted by substrate availability. On the other hand, N2O flux was promoted by lower soil C:N ratio and higher soil pH in DBL and UDF. CO2 flux was the highest in DF (241 mg C m−2 h−1) and was the lowest in DBL (94 mg C m−2 h−1), whereas CH4 flux was the highest in DBL (0.91 mg C m−2 h−1) and was the lowest in DF (0.01 mg C m−2 h−1), respectively. N2O flux was not significantly different among land uses. CO2 flux relatively contributed to 91–100% of GWP. In conclusion, it is necessary to decrease CO2 flux to mitigate GWP through a rise in groundwater level and soil moisture in the region.


2021 ◽  
Vol 167 (3-4) ◽  
Author(s):  
Ahmed Elkouk ◽  
Zine El Abidine El Morjani ◽  
Yadu Pokhrel ◽  
Abdelghani Chehbouni ◽  
Abdelfattah Sifeddine ◽  
...  

Author(s):  
Mavis Badu Brempong ◽  
Urszula Norton ◽  
Jay B. Norton

Abstract Purpose An 8-week incubation study was conducted to monitor soil inorganic nitrogen (N), dissolved organic carbon (DOC), greenhouse gases (GHG) [CO2, N2O and CH4] and cumulative global warming potential (GWP) in dryland soil. Methods Soil was amended with variable rates of compost (zero, 15, 30 and 45 dry Mg ha−1) and soil moistures [5% (dry), 7% (normal) and 14% (wet) water filled pore space (WFPS)] and experienced biweekly temperature transitions from 5 °C (late winter) to 10 °C (early spring) to 15 °C (late spring) to 25 °C (early summer). Results The addition of 30 and 45 Mg ha−1 compost enhanced N mineralization with 13% more soil inorganic N (7.49 and 7.72 µg Ng−1 day−1, respectively) during early summer compared with lower compost rates. Normal and wet soils had 35% more DOC in the late spring (an average of 34 µg g−1 day−1) compared to the dry WFPS, but transitioning from late spring to early summer, DOC at all soil WFPS levels increased. Highest rates of compost were not significant sources of GHG with normal soil WFPS, compared with lower compost rates. Carbon dioxide emissions increased by 59 and 15%, respectively, as soil WFPS increased from dry to normal and normal to wet. Soils with normal WFPS were the most effective CH4 sink. Conclusion One-time application of high compost rates to dryland soils leads to enhanced N and C mineralization under normal soil moisture and warmer temperature of the summer but will not pose significant global warming dangers to the environment through GHG emissions since soils are rarely wet.


2018 ◽  
Vol 3 (2) ◽  
pp. 42
Author(s):  
I Gede Ketut Adiputra

Continuous water uptake from soil via the root system and it transport into the leaves system is a basic mechanism in plants to maintain growth and reproduction.  Consequently, sustaining soil moisture to keep water supply into the plants should continuously occurred to maintain growth.  Under condition of global warming scenario and robust agricultural practices, soil organic carbon which plays as a key for soil moisture and fertility are continuously diminished.  This condition could subsequently endanger the growth of shallow rooted plants, such as vanilla.  To mitigate the impact of global warming and robust agricultural practices, enhancing carbon sequestration to inhibit water loss is regarded crucial.  However, although mulch materials are locally available in most land crop plantations, those materials are rarely viewed as functional for maintaining soil moisture.  Both water stress and mulching might have not been seriously anticipated in conventional agricultural practices.  For example, continuous decreased in yield of vanilla plants are usually handled by applying pesticide or fertilizer, without addition of mulch.  The objective of this review was to gain a better understanding of soil moisture to increase vanilla growth and reproduction.  This review found that mulching could reduce evaporation, increase soil organic carbon and soil fertility.  It is concluded that intensification of mulching could enhance sustainability of vanilla plantations.  


2020 ◽  
Author(s):  
Akash Koppa ◽  
Thomas Remke ◽  
Stephan Thober ◽  
Oldrich Rakovec ◽  
Sebastian Müller ◽  
...  

<p>Headwater systems are a major source of water, sediments, and nutrients (including nitrogen and carbon di-oxide) for downstream aquatic, riparian, and inland ecosystems. As precipitation changes are expected to exhibit considerable spatial variability in the future, we hypothesize that headwater contribution to major rivers will also change significantly. Quantifying these changes is essential for developing effective adaptation and mitigation strategies against climate change. However, the lack of hydrologic projections at high resolutions over large domains have hindered attempts to quantify climate change impacts on headwater systems.</p><p>Here, we overcome this challenge by developing an ensemble of hydrologic projections at an unprecedented resolution (1km) for Germany. These high resolution projections are developed within the framework of the Helmholtz Climate Initiative (https://www.helmholtz.de/en/current-topics/the-initiative/climate-research/). Our modeling chain consists of the following four components:</p><p><strong>Climate Modeling:</strong> We statistically downscale and bias-adjust climate change scenarios from three representative concentration pathway (RCP) scenarios derived from the EURO-CORDEX ensemble - 2.6, 4.5, and 8.5 to a horizontal resolution of 1km over Germany (i.e, a total of 75 ensemble members). The EURO-CORDEX ensemble is generated by dynamically downscaling CMIP-5 general circulation models (GCM) using regional climate models (RCMs). <strong>Hydrologic Modeling:</strong> To account for model structure uncertainty, the climate model projections are used as forcings for three spatially distributed hydrologic models - a) the mesocale Hydrologic model (mHM), b) Noah-MP, and c) HTESSEL. The outputs that will be generated in the study are soil moisture, evapotranspiration, snow water equivalent, and runoff. <strong>Streamflow Routing:</strong> To minimize uncertainty from river routing schemes, we use the multiscale routing model (mRM v1.0) to route runoff from all the three models. <strong>River Temperature Modeling:</strong> A novel river temperature model is used to quantify the changes in river temperature due to anthropogenic warming.</p><p>The 225-member ensemble streamflow outputs (75 climate model members and 3 hydrologic models) are used to quantify the changes in the contribution of headwater watersheds to all the major rivers in Germany. Finally, we analyze changes in soil moisture, snow melt, and river temperature and their implications for headwater contributions. Previously, a high-resolution (5km) multi-model ensemble for climate change projections has been created within the EDgE project<strong><sup>1,2,3,4</sup></strong>. The newly created projections in this project will be compared against those created in the EDgE project.  The ensemble used in this project will profit from the higher resolution of the regional climate models that provide a more detailed land orography.</p><p><strong>References</strong></p><p><strong>[1] </strong>Marx,<em> A. et al. (2018). Climate change alters low flows in Europe under global warming of 1.5, 2, and 3 C. Hydrology and Earth System Sciences, 22(2), 1017-1032.</em></p><p><strong>[2]</strong><em> Samaniego, L. et al. (2019). Hydrological forecasts and projections for improved decision-making in the water sector in Europe. Bulletin of the American Meteorological Society.</em></p><p><strong>[3]</strong> Samaniego,<em> L. and Thober, S., et al. (2018). Anthropogenic warming exacerbates European soil moisture droughts. Nature Climate Change, 8(5), 421.</em></p><p><strong>[4]</strong> Thober,<em> S. et al. (2018). Multi-model ensemble projections of European river floods and high flows at 1.5, 2, and 3 degrees global warming. Environmental Research Letters, 13(1), 014003.</em></p><p> </p><p> </p><p> </p>


Sign in / Sign up

Export Citation Format

Share Document