scholarly journals Compost and soil moisture effects on seasonal carbon and nitrogen dynamics, greenhouse gas fluxes and global warming potential of semi-arid soils

Author(s):  
Mavis Badu Brempong ◽  
Urszula Norton ◽  
Jay B. Norton

Abstract Purpose An 8-week incubation study was conducted to monitor soil inorganic nitrogen (N), dissolved organic carbon (DOC), greenhouse gases (GHG) [CO2, N2O and CH4] and cumulative global warming potential (GWP) in dryland soil. Methods Soil was amended with variable rates of compost (zero, 15, 30 and 45 dry Mg ha−1) and soil moistures [5% (dry), 7% (normal) and 14% (wet) water filled pore space (WFPS)] and experienced biweekly temperature transitions from 5 °C (late winter) to 10 °C (early spring) to 15 °C (late spring) to 25 °C (early summer). Results The addition of 30 and 45 Mg ha−1 compost enhanced N mineralization with 13% more soil inorganic N (7.49 and 7.72 µg Ng−1 day−1, respectively) during early summer compared with lower compost rates. Normal and wet soils had 35% more DOC in the late spring (an average of 34 µg g−1 day−1) compared to the dry WFPS, but transitioning from late spring to early summer, DOC at all soil WFPS levels increased. Highest rates of compost were not significant sources of GHG with normal soil WFPS, compared with lower compost rates. Carbon dioxide emissions increased by 59 and 15%, respectively, as soil WFPS increased from dry to normal and normal to wet. Soils with normal WFPS were the most effective CH4 sink. Conclusion One-time application of high compost rates to dryland soils leads to enhanced N and C mineralization under normal soil moisture and warmer temperature of the summer but will not pose significant global warming dangers to the environment through GHG emissions since soils are rarely wet.

Atmosphere ◽  
2018 ◽  
Vol 9 (12) ◽  
pp. 465 ◽  
Author(s):  
Kiwamu Ishikura ◽  
Untung Darung ◽  
Takashi Inoue ◽  
Ryusuke Hatano

This study investigated spatial factors controlling CO2, CH4, and N2O fluxes and compared global warming potential (GWP) among undrained forest (UDF), drained forest (DF), and drained burned land (DBL) on tropical peatland in Central Kalimantan, Indonesia. Sampling was performed once within two weeks in the beginning of dry season. CO2 flux was significantly promoted by lowering soil moisture and pH. The result suggests that oxidative peat decomposition was enhanced in drier position, and the decomposition acidify the peat soils. CH4 flux was significantly promoted by a rise in groundwater level, suggesting that methanogenesis was enhanced under anaerobic condition. N2O flux was promoted by increasing soil nitrate content in DF, suggesting that denitrification was promoted by substrate availability. On the other hand, N2O flux was promoted by lower soil C:N ratio and higher soil pH in DBL and UDF. CO2 flux was the highest in DF (241 mg C m−2 h−1) and was the lowest in DBL (94 mg C m−2 h−1), whereas CH4 flux was the highest in DBL (0.91 mg C m−2 h−1) and was the lowest in DF (0.01 mg C m−2 h−1), respectively. N2O flux was not significantly different among land uses. CO2 flux relatively contributed to 91–100% of GWP. In conclusion, it is necessary to decrease CO2 flux to mitigate GWP through a rise in groundwater level and soil moisture in the region.


1953 ◽  
Vol 1 (1) ◽  
pp. 70 ◽  
Author(s):  
LR Clark

Outbreaks of the Australian plague locust, Chortoicetes terminifera (Walker), occurred each locus: season from 1940-41 to 1944-45. The largest outbreak, that of 1942-43, was less severe than those recorded in 1937-38, 1938-39, and 1939-40. Consideration of the course of these recent outbreaks in relation to temperature and moisture has again demonstrated the importance of these factors as determinants of the regional and seasonal occurrence of swarms. The curve of limiting conditions for the persistence of swarm populations, obtained by Key (1942), was a useful guide for the interpretation of events in the present analysis. However, a number of discrepancies occurred. These were due probably to a variety of causes, e.g, the kind of infestation concerned, the crudenessof the monthly Meyer ratio as an index of soil moisture and pasture conditions, and regional differences in the upper moisture limits at high temperatures. The results of the present investigation suggest that:(a) The limiting Meyer ratios for the persistence or development of a spring infestation of small, weakly gregarious swarms at temperatures between 60 and 70�F. exceed 4-5; either when the September Meyer ratio is 5 or less, or when the spring is preceded by a severe winter drought.( b ) At temperatures around 75'F., the maximum Meyer ratio at which swarms can exist is approximately 20. (c) At temperatures near the estimated hatching threshold of 57.5'F., swarm hatchings can occur at Meyer ratios as low as 4-5. The collapse of the 1942-43 outbreak in part of the main area infested was due apparently to parasitism by an unidentified fly. Similarly, a biotic factor, possibly the same parasite, was largely responsible for the decline of the 1943-44 outbreak during the late spring and early summer.


2021 ◽  
Vol 2069 (1) ◽  
pp. 012232
Author(s):  
Sarah M. Engel ◽  
Manuela Walsdorf-Maul ◽  
Michael Schneider

Abstract The construction industry has a major influence on man-made carbon dioxide emissions. Being sustainable also means reducing or neutralizing our carbon dioxide pollution in the future. This research and the corresponding work are therefore guided by the following question: Is it possible and useful to conduct life cycle assessments and at the same time analyze the environmental impact of the construction sector? In the context of this work, a life cycle assessment of a building is performed using the example of a hotel building. All construction elements of the thermal envelope are examined from an environmental point of view by considering the global warming potential of each part of the construction. The aim of the study is to draw conclusions about the parameters that are decisive for the construction of a hotel building from an ecological standpoint in the production phase. Based on the results of the study, we want to drive the development of a “future” energy performance certificate forward that graphically illustrates the evaluation of buildings under both aspects - energy efficiency (final energy) and sustainability (GWP - global warming potential).


2021 ◽  
pp. 0958305X2110509
Author(s):  
R Maniarasu ◽  
Sushil Kumar Rathore ◽  
S. Murugan

In today’s world, owing to industrial expansion, urbanization, the rapid growth of the human population, and the high standard of living, the utilization of the most advanced technologies is unavoidable. The enhanced anthropogenic activities worldwide result in a continuous increase in global warming potential, thereby raising a global concern. The constant rise in global warming potential forces the world to mitigate greenhouse gases, particularly carbon dioxide. Carbon dioxide is considered as the primary contributor responsible for global warming and climatic changes. The global anthropogenic carbon dioxide emissions released into the atmosphere can eventually deteriorate the environment and endanger the ecosystem. Combating global warming is one of the main challenges in achieving sustainable development. Carbon capture and storage is a potential solution to mitigate carbon dioxide emissions. There are three main methods for carbon capture and storage: post-combustion, pre-combustion, and oxy-fuel combustion. Among them, post-combustion is used in thermal power plants and industrial sectors, all of which contribute a significant amount of carbon dioxide. Different techniques such as physical and chemical absorption, physical and chemical adsorption, membrane separation, and cryogenic distillation used for carbon capture are thoroughly discussed and presented. Currently, there are various materials including absorbents, adsorbents, and membranes used in carbon dioxide capture. Still, there is a search for new and novel materials and processes for separating and capturing carbon dioxide. This review article provides a comprehensive review of different methods, techniques, materials, and processes used for separating and capturing carbon dioxide from significant stationary point sources.


2022 ◽  
Vol 9 (1) ◽  
Author(s):  
Ruslan Shakhmatov ◽  
Shuhei Hashiguchi ◽  
Trofim C. Maximov ◽  
Atsuko Sugimoto

AbstractChanges in winter precipitation (snow) may greatly affect vegetation by altering hydrological and biochemical processes. To understand the effects of changing snow cover depth and melt timing on the taiga forest ecosystem, a snow manipulation experiment was conducted in December 2015 at the Spasskaya Pad experimental larch forest in Eastern Siberia, which is characterized by a continental dry climate with extreme cold winters and hot summers. Variables including soil temperature and moisture, oxygen and hydrogen isotope ratios of soil moisture and stem water, foliar nitrogen and carbon contents and their isotopes, phenology, and soil inorganic nitrogen were observed at snow removal (SNOW−), snow addition (SNOW+), and CONTROL plots. After snow manipulation, the soil temperature at the SNOW− plot decreased significantly compared to the CONTROL and SNOW+ plots. At SNOW− plot, snowmelt was earlier and soil temperature was higher than at other plots during spring because of low soil moisture caused by less snowmelt water. Despite the earlier snowmelt and higher soil temperature in the SNOW− plot in the early growing season, needle elongation was delayed. Leaf chemistry also differed between the CONTROL and SNOW− plots. The needle nitrogen content in the SNOW− plot was lower in the middle of July, whereas no difference was observed among the three plots in August. The soil inorganic nitrogen content of each plot corresponded to these results. The amount of soil ammonium was lower in the SNOW− plot than in the other plots at the end of July, however, once production started in August, the amount of soil ammonium in the three plots was comparable. Extremely low soil temperatures in winter and freeze–thaw cycles in spring and dry soil condition in spring and early summer at the SNOW− plot may have influenced the phenology and production of soil inorganic nitrogen.


2011 ◽  
Vol 8 (3) ◽  
pp. 733-742 ◽  
Author(s):  
E. Sousa Neto ◽  
J. B. Carmo ◽  
M. Keller ◽  
S. C. Martins ◽  
L. F. Alves ◽  
...  

Abstract. Soils of tropical forests are important to the global budgets of greenhouse gases. The Brazilian Atlantic Forest is the second largest tropical moist forest area of South America, after the vast Amazonian domain. This study aimed to investigate the emissions of nitrous oxide (N2O), carbon dioxide (CO2) and methane (CH4) fluxes along an altitudinal transect and the relation between these fluxes and other climatic, edaphic and biological variables (temperature, fine roots, litterfall, and soil moisture). Annual means of N2O flux were 3.9 (± 0.4), 1.0 (± 0.1), and 0.9 (± 0.2) ng N cm−2 h−1 at altitudes 100, 400, and 1000 m, respectively. On an annual basis, soils consumed CH4 at all altitudes with annual means of −1.0 (± 0.2), −1.8 (± 0.3), and −1.6 (± 0.1) mg m−2 d−1 at 100 m, 400 m and 1000 m, respectively. Estimated mean annual fluxes of CO2 were 3.5, 3.6, and 3.4 μmol m−2 s−1 at altitudes 100, 400 and 1000 m, respectively. N2O fluxes were significantly influenced by soil moisture and temperature. Soil-atmosphere exchange of CH4 responded to changes in soil moisture. Carbon dioxide emissions were strongly influenced by soil temperature. While the temperature gradient observed at our sites is only an imperfect proxy for climatic warming, our results suggest that an increase in air and soil temperatures may result in increases in decomposition rates and gross inorganic nitrogen fluxes that could support consequent increases in soil N2O and CO2 emissions and soil CH4 consumption.


Atmosphere ◽  
2020 ◽  
Vol 11 (6) ◽  
pp. 614
Author(s):  
Hamidou Bah ◽  
Xiao Ren ◽  
Yanqiang Wang ◽  
Jialiang Tang ◽  
Bo Zhu

Characterizing greenhouse gas (GHG) emissions and global warming potential (GWP) has become a key step in the estimation of atmospheric GHG concentrations and their potential mitigation by cropland management. However, the impacts of organic amendments on GHG, GWP, and yield-scaled GWP on cropland have not been well documented. Here, we investigate four amendment treatments (no amendment, mineral fertilizers, and pig slurry or crop residue combined with mineral fertilizers) during a two-year field experiment in rain-fed wheat-maize cropping systems. The results show that the average annual cumulative methane (CH4) flux ranged from −2.60 to −2.97 kg·C·ha−1 while nitrous oxide (N2O) flux ranged from 0.44 to 4.58 kg·N·ha−1 across all four treatments. N2O emissions were significantly correlated with soil inorganic nitrogen (i.e., NH4+-N and NO3−-N), and soil dissolved organic carbon (DOC) during both the winter wheat and summer maize seasons. On average, organic amendments combined with mineral fertilizers increased the annual GWP by 26–74% and yield-scaled GWP by 19–71% compared to those under only mineral fertilizers application. This study indicates that the fertilization strategy for Eutric Regosols can shift from only mineral fertilizers to organic amendments combined with mineral fertilizers, which can help mitigate GHG emissions and GWP while maintaining crop yields.


2011 ◽  
Vol 62 (6) ◽  
pp. 596 ◽  
Author(s):  
C. S. Bansemer ◽  
M. B. Bennett

Photo-identification techniques were used to investigate temporal and spatial distributions of Carcharias taurus (Rafinesque, 1810) in relation to maturity, sex and pregnancy status at 19 sites along Australia’s eastern coastline. Of 931 individual sharks identified between 2004 and 2008, 479 were female (271 mature, 208 immature) and 452 male (288 mature, 164 immature). Mature, non-gravid females and mature males were mostly observed in the southern to central parts of this species range, along the eastern coast of Australia, in early summer to early winter. These sharks subsequently moved northward, and mating occurred in late spring to early summer in waters off the coast of northern New South Wales and southern Queensland. Pregnant C. taurus aggregated at Wolf Rock in southern Queensland, at the most northerly part of their known range, from late summer to early winter. These sharks subsequently migrated south to pup in central and southern waters of their range in late winter to late spring. Immature sharks of both sexes moved less than mature sharks, showed no synchronised migration patterns, and were mostly restricted to central and southern waters. The improved understanding of sex- and maturity-based migration of C. taurus provided here should facilitate a conservation strategy appropriate for this species in Australian waters.


1998 ◽  
Vol 1 ◽  
pp. 9 ◽  
Author(s):  
Randall R Reeves

The ringed seal (Phoca hispida) has a circumpolar Arctic distribution. Because of its great importance to northern communities and its role as the primary food of polar bears (Ursus maritimus) the ringed seal has been studied extensively in Canada, Alaska, Russia, Svalbard and Greenland as well as in the Baltic Sea and Karelian lakes. No clear-cut boundaries are known to separate ringed seal stocks in marine waters. Adult seals are thought to be relatively sedentary, but sub-adults sometimes disperse over long distances. Stable ice with good snow cover is considered the most productive habitat although production in pack ice has been little studied. Populations appear to be structured so that immature animals and young adults are consigned to sub-optimal habitat during the spring pupping and breeding season. Annual production in ringed seal populations, defined as thepup percentage in the total population after the late winter pupping season, is probably in the order of 18-24%. Most estimates of maximum sustainable yield are in the order of 7%.The world population of ringed seals is at least a few million. Methods of abundance estimation have included aerial surveys, dog searches and remote sensing of lairs and breathing holes, acoustic monitoring, correlation analysis by reference to sizes of polar bear populations, and inference from estimated energy requirements of bear populations. Aerial strip survey has been the method of choice for estimating seal densities over large areas. Adjustment factors to account for seals not hauled out at the time of the survey, for seals that dove ahead of the aircraft, and for seals on the ice within the surveyed strip but not detected by the observers, are required for estimates of absolute abundance.Male and female ringed seals are sexually mature by 5-7 years of age (earlier at Svalbard). Pupping usually occurs in March or early April and is followed by 5-7 weeks of lactation. Breeding takes place in mid to late May, and implantation is delayed for about 3 months. In at least some parts of their range, ringed seals feed mainly on schooling gadids from late autumn through early spring andon benthic crustaceans and polar cod (Boreogadus saida) from late spring through summer. Little feeding is done during the moult, which takes place in late spring and early summer. Pelagic crustaceans offshore and mysids inshore become important prey in late summer and early autumn in some areas. Ringed seals have several natural predators, the most important of which is the polar bear in most arctic regions. Arctic foxes (Alopex lagopus) kill a large percentage of pups in someareas.From a conservation perspective, the ringed seal appears to be secure. Levels of exploitation of arctic populations have usually been considered sustainable, except in the Okhotsk Sea. Large fluctuations in production of ringed seals in the Beaufort Sea and Amundsen Gulf are thought to be driven by natural variability in environmental conditions. While concern has been expressed about thepotential impacts of industrial activity and pollution on ringed seals, such impacts have been documented only in limited areas. Because of their ubiquitous occurrence and availability for sampling, ringed seals are good subjects for monitoring contaminant trends in Arctic marine food chains. 


Sign in / Sign up

Export Citation Format

Share Document