A metric for surface heat flux effect on horizontal sea surface temperature gradients

2017 ◽  
Vol 51 (1-2) ◽  
pp. 547-561 ◽  
Author(s):  
Tomoki Tozuka ◽  
Shun Ohishi ◽  
Meghan F. Cronin
2006 ◽  
Vol 19 (12) ◽  
pp. 2953-2968 ◽  
Author(s):  
Takashi Mochizuki ◽  
Hideji Kida

Abstract The seasonality of the decadal sea surface temperature (SST) anomalies and the related physical processes in the northwestern Pacific were investigated using a three-dimensional bulk mixed layer model. In the Kuroshio–Oyashio Extension (KOE) region, the strongest decadal SST anomaly was observed during December–February, while that of the central North Pacific occurred during February–April. From an examination of the seasonal heat budget of the ocean mixed layer, it was revealed that the seasonal-scale enhancement of the decadal SST anomaly in the KOE region was controlled by horizontal Ekman temperature transport in early winter and by vertical entrainment in autumn. The temperature transport by the geostrophic current made only a slight contribution to the seasonal variation of the decadal SST anomaly, despite controlling the upper-ocean thermal conditions on decadal time scales through the slow Rossby wave adjustment to the wind stress curl. When averaging over the entire KOE region, the contribution from the net sea surface heat flux was also no longer significantly detected. By examining the horizontal distributions of the local thermal damping rate, however, it was concluded that the wintertime decadal SST anomaly in the eastern KOE region was rather damped by the net sea surface heat flux. It was due to the fact that the anomalous local thermal damping of the SST anomaly resulting from the vertical entrainment in autumn was considerably strong enough to suppress the anomalous local atmospheric thermal forcing that acted to enhance the decadal SST anomaly.


1976 ◽  
Vol 98 (2) ◽  
pp. 208-212 ◽  
Author(s):  
G. M. Harpole ◽  
I. Catton

The laminar boundary layer equations for free convection over bodies of arbitrary shape (i.e., a three-term series expansion) and with arbitrary surface heat flux or surface temperature are solved in local Cartesian coordinates. Both two-dimensional bodies (e.g., horizontal cylinders) and axisymmetric bodies (e.g., spheres) with finite radii of curvature at their stagnation points are considered. A Blasius series expansion is applied to convert from partial to ordinary differential equations. An additional transformation removes the surface shape dependence and the surface heat flux or surface temperature dependence of the equations. A second-order-correct, finite-difference method is used to solve the resulting equations. Tables of results for low Prandtl numbers are presented, from which local Nusselt numbers can be computed.


1996 ◽  
Vol 26 (10) ◽  
pp. 1969-1988 ◽  
Author(s):  
Gary A. Wick ◽  
William J. Emery ◽  
Lakshmi H. Kantha ◽  
Peter Schlüssel

2021 ◽  
Author(s):  
Frida Hoem ◽  
Suning Hou ◽  
Matthew Huber ◽  
Francesca Sangiorgi ◽  
Henk Brinkhuis ◽  
...  

<p>The opening of the Tasmanian Gateway during the Eocene and further deepening in the Oligocene is hypothesized to have reorganized ocean currents, preconditioning the Antarctic Circumpolar Current (ACC) to evolve into place. However, fundamental questions still remain on the past Southern Ocean structure. We here present reconstructions of latitudinal temperature gradients and the position of ocean frontal systems in the Australian sector of the Southern Ocean during the Oligocene. We generated new sea surface temperature (SST) and dinoflagellate cyst data from the West Tasman margin, ODP Site 1168. We compare these with other records around the Tasmanian Gateway, and with climate model simulations to analyze the paleoceanographic evolution during the Oligocene. The novel organic biomarker TEX<sub>86</sub>- SSTs from ODP Site 1168, range between 19.6 – 27.9°C (± 5.2°C, using the linear calibration by Kim et al., 2010), supported by temperate and open ocean dinoflagellate cyst assemblages. The data compilation, including existing TEX<sub>86</sub>-based SSTs from ODP Site 1172 in the Southwest Pacific Ocean, DSDP Site 274 offshore Cape Adare, DSDP Site 269 and IODP Site U1356 offshore the Wilkes Land Margin and terrestrial temperature proxy records from the Cape Roberts Project (CRP) on the Ross Sea continental shelf, show synchronous variability in temperature evolution between Antarctic and Australian sectors of the Southern Ocean. The SST gradients are around 10°C latitudinally across the Tasmanian Gateway throughout the early Oligocene, and increasing in the Late Oligocene. This increase can be explained by polar amplification/cooling, tectonic drift, strengthening of atmospheric currents and ocean currents. We suggest that the progressive cooling of Antarctica and the absence of mid-latitude cooling strengthened the westerly winds, which in turn could drive an intensification of the ACC and strengthening of Southern Ocean frontal systems.</p>


Sign in / Sign up

Export Citation Format

Share Document