scholarly journals Dynamical mechanisms linking Indian monsoon precipitation and the circumglobal teleconnection

2021 ◽  
Author(s):  
Jonathan D. Beverley ◽  
Steven J. Woolnough ◽  
Laura H. Baker ◽  
Stephanie J. Johnson ◽  
Antje Weisheimer ◽  
...  

AbstractThe circumglobal teleconnection (CGT) is an important mode of circulation variability, with an influence across many parts of the northern hemisphere. Here, we examine the excitation mechanisms of the CGT in the ECMWF seasonal forecast model, and the relationship between the Indian summer monsoon (ISM), the CGT and the extratropical northern hemisphere circulation. Results from relaxation experiments, in which the model is corrected to reanalysis in specific regions, suggest that errors over northwest Europe are more important in inhibiting the model skill at representing the CGT, in addition to northern hemisphere skill more widely, than west-central Asia and the ISM region, although the link between ISM precipitation and the extratropical circulation is weak in all experiments. Thermal forcing experiments in the ECMWF model, in which a heating is applied over India, suggest that the ISM does force an extratropical Rossby wave train, with upper tropospheric anticyclonic anomalies over east Asia, the North Pacific and North America associated with increased ISM heating. However, this eastward-propagating branch of the wave train does not project into Europe, and the response there occurs largely through westward-propagating Rossby waves. Results from barotropic model experiments show a response that is highly consistent with the seasonal forecast model, with similar eastward- and westward-propagating Rossby waves. This westward-propagating response is shown to be important in the downstream reinforcement of the wave train between Asia and North America.

2005 ◽  
Vol 18 (17) ◽  
pp. 3483-3505 ◽  
Author(s):  
Qinghua Ding ◽  
Bin Wang

Abstract Analysis of the 56-yr NCEP–NCAR reanalysis data reveals a recurrent circumglobal teleconnection (CGT) pattern in the summertime midlatitude circulation of the Northern Hemisphere. This pattern represents the second leading empirical orthogonal function of interannual variability of the upper-tropospheric circulation. The CGT, having a zonal wavenumber-5 structure, is primarily positioned within a waveguide that is associated with the westerly jet stream. The spatial phases of CGT tend to lock to preferred longitudes. The geographically phase-locked patterns bear close similarity during June, August, and September, but the pattern in July shows shorter wavelengths in the North Pacific–North America sector. The CGT is accompanied by significant rainfall and surface air temperature anomalies in the continental regions of western Europe, European Russia, India, east Asia, and North America. This implies that the CGT may be a source of climate variability and predictability in the above-mentioned midlatitude regions. The CGT has significant correlations with the Indian summer monsoon (ISM) and El Niño–Southern Oscillation (ENSO). However, in normal ISM years the CGT–ENSO correlation disappears; on the other hand, in the absence of El Niño or La Niña, the CGT–ISM correlation remains significant. It is suggested that the ISM acts as a “conductor” connecting the CGT and ENSO. When the interaction between the ISM and ENSO is active, ENSO may influence northern China via the ISM and the CGT. Additionally, the variability of the CGT has no significant association with the Arctic Oscillation and the variability of the western North Pacific summer monsoon. The circulation of the wave train shows a barotropic structure everywhere except the cell located to the northwest of India, where a baroclinic circulation structure dominates. Two possible scenarios are proposed. The abnormal ISM may excite an anomalous west-central Asian high and downstream Rossby wave train extending to the North Pacific and North America. On the other hand, a wave train that is excited in the jet exit region of the North Atlantic may affect the west-central Asian high and, thus, the intensity of the ISM. It is hypothesized that the interaction between the global wave train and the ISM heat source may be instrumental in maintaining the boreal summer CGT.


2010 ◽  
Vol 138 (6) ◽  
pp. 2434-2446 ◽  
Author(s):  
T. Jung ◽  
M. J. Miller ◽  
T. N. Palmer

Abstract Experiments with the ECMWF model are carried out to study the influence that a correct representation of the lower boundary conditions, the tropical atmosphere, and the Northern Hemisphere stratosphere would have on extended-range forecast skill of the extratropical Northern Hemisphere troposphere during boreal winter. Generation of forecast errors during the course of the integration is artificially reduced by relaxing the ECMWF model toward the 40-yr ECMWF Re-Analysis (ERA-40) in certain regions. Prescribing rather than persisting sea surface temperature and sea ice fields leads to a modest forecast error reduction in the extended range, especially over the North Pacific and North America; no beneficial influence is found in the medium range. Relaxation of the tropical troposphere leads to reduced extended-range forecast errors especially over the North Pacific, North America, and the North Atlantic. It is shown that a better representation of the Madden–Julian oscillation is of secondary importance for explaining the results of the tropical relaxation experiments. The influence from the tropical stratosphere is negligible. Relaxation of the Northern Hemisphere stratosphere leads to forecast error reduction primarily in high latitudes and over Europe. However, given the strong influence from the troposphere onto the Northern Hemisphere stratosphere it is argued that stratospherically forced experiments are very difficult to interpret in terms of their implications for extended-range predictability of the tropospheric flow. The results are discussed in the context of future forecasting system development.


2018 ◽  
Vol 146 (8) ◽  
pp. 2559-2577 ◽  
Author(s):  
N. Vigaud ◽  
A.W. Robertson ◽  
M. K. Tippett

Abstract Four recurrent weather regimes are identified over North America from October to March through a k-means clustering applied to MERRA daily 500-hPa geopotential heights over the 1982–2014 period. Three regimes resemble Rossby wave train patterns with some baroclinicity, while one is related to an NAO-like meridional pressure gradient between eastern North America and western regions of the North Atlantic. All regimes are associated with distinct rainfall and surface temperature anomalies over North America. The four-cluster partition is well reproduced by ECMWF week-1 reforecasts over the 1995–2014 period in terms of spatial structures, daily regime occurrences, and seasonal regime counts. The skill in forecasting daily regime sequences and weekly regime counts is largely limited to 2 weeks. However, skill relationships with the MJO, ENSO, and SST variability in the Atlantic and Indian Oceans suggest further potential for subseasonal predictability based on wintertime large-scale weather regimes.


2021 ◽  
Vol 8 ◽  
Author(s):  
Jun-Hyeok Son ◽  
Kyong-Hwan Seo ◽  
Seok-Woo Son ◽  
Dong-Hyun Cha

The Northern Hemisphere summer climate isstrongly affected by a circumglobal stationary Rossby wave train, which can be manifested by the first EOF mode of the geopotential height at 200 hPa. Interannual variation of this Northern Hemisphere wave (NHW) pattern has a significant impact on remarkably warm surface temperature anomalies over the North Atlantic, Northeast Europe, East Asia to Central-North Pacific, and America, particularly in 2018 and 2010. The NHW pattern is likely generated by atmospheric diabatic heating and vorticity forcing: diabatic heating is mainly confined in the Indian summer monsoon (ISM) precipitation region, whereas the anti-cyclonic vorticity forcing is distributed in the globe. The ISM is a well-known diabatic heat source; however, the main source of vorticity forcing has not been established. In general, the tropical vorticity anomaly comes from diabatic heating-induced atmospheric waves and randomly generated inherent internal waves. The linear baroclinic model experiment reveals that the NHW pattern can be generated by the westward propagating tropical waves generated by the ISM diabatic heat forcing.


2021 ◽  
Author(s):  
Ramon Fuentes-Franco ◽  
Torben Koenigk ◽  
David Docquier ◽  
Federico Graef ◽  
Klaus Wyser

Abstract The influence of Rossby wave sources (RWS) emitted on the Northeastern Pacific Ocean in the Northern Hemisphere during summer is analysed in the ERA5 reanalysis and new large ensemble performed with the EC-Earth3 model. Using extreme years composites of precipitation, surface temperature, geopotential height, we found a causal influence of the Rossby waves generated over the Northeastern Pacific Ocean, on a global climate response. Both the reanalysis ERA5 and the EC-Earth3 model show that RWS triggers wave-like patterns arising from the upper troposphere Northeastern Pacific region. We show that an increased Rossby wave sources intensity is related with negative temperature anomalies over western North America, and positive temperature anomalies over eastern North America concurrently increased precipitation over Northern Europe during summer and sea-ice concentration decrease in the Arctic. We also show that the North Atlantic plays a very important role hindering or permitting that Rossby waves generated in the Pacific reach the Atlantic and modulate the atmospheric conditions over Europe. Such conditions were found in ERA5 and SMHI-LENS during colder and icier conditions over the North Atlantic.


2015 ◽  
Vol 72 (9) ◽  
pp. 3597-3608 ◽  
Author(s):  
Ming Bao ◽  
John M. Wallace

Abstract Clusters in the Northern Hemisphere wintertime, 10-day low-pass-filtered 500-hPa height field are identified using the method of self-organizing maps (SOMs). Results are based on 1) a 57-winter record of ERA and 2) a 93-winter record of the NOAA Twentieth-Century Reanalysis (20CR). The clusters derived from SOMs appear to be more robust and more linearly independent than their counterparts derived from Ward’s method, and clusters with comparable numbers of member days are more distinctive in terms of the standardized Euclidean distances of their centroids from the centroid of the dataset. The reproducible SOM clusters in the hemispheric domain are 1) the negative polarity of the North Atlantic Oscillation (NAO), 2) a pattern suggestive of Alaska blocking with a downstream wave train extending over North America and the North Atlantic, 3) an enhancement of the climatological-mean stationary wave pattern in the Western Hemisphere that projects positively upon the Pacific–North America (PNA) pattern, and 4) a pattern that projects upon the negative polarity of the PNA pattern. The first three patterns have important impacts on the wintertime climate in North America and Europe. In particular, they are helpful in interpreting prevailing flow patterns during the exceptional winters of 1930–31, 2009–10, and 2013–14. Because of the very limited number of independent samples in a single winter, the number of days per winter in which the circulation resides within individual clusters varies erratically from winter to winter, rendering attribution difficult.


2018 ◽  
Vol 52 (5-6) ◽  
pp. 3759-3771 ◽  
Author(s):  
Jonathan D. Beverley ◽  
Steven J. Woolnough ◽  
Laura H. Baker ◽  
Stephanie J. Johnson ◽  
Antje Weisheimer

2021 ◽  
Author(s):  
Ramón Fuentes-Franco ◽  
Torben Koenigk ◽  
David Docquier ◽  
Federico Graef ◽  
Klaus Wyser

<p>The influence of Rossby wave sources (RWS) emitted on the Northeastern Pacific Ocean (NePO) in the Northern Hemisphere during summer is analysed in the ERA5 reanalysis and a large ensemble performed with the EC-Earth3 model. Using extreme years composites of precipitation, surface temperature and geopotential height, we found a causal influence of the Rossby waves generated over the NePO on a global climate response. Both the reanalysis ERA5 and the EC-Earth3 large ensemble show that RWS triggers wave-like patterns arising from the upper troposphere NePO region. We show that an increased Rossby wave sources intensity is related with a) negative temperature anomalies over western North America, b) positive temperature anomalies over eastern North America, c) increased precipitation over Northern Europe during summer and d) sea-ice concentration decrease in the Arctic.  We also show that the North Atlantic plays a very important role hindering or permitting that Rossby waves generated in the Pacific reach the Atlantic and modulate the atmospheric conditions over Europe. Such conditions were found in ERA5 and EC-Earth3 large ensemble during colder and icier conditions over the North Atlantic.</p>


2005 ◽  
Vol 62 (12) ◽  
pp. 4423-4440 ◽  
Author(s):  
Koutarou Takaya ◽  
Hisashi Nakamura

Abstract Mechanisms of intraseasonal amplification of the Siberian high are investigated on the basis of composite anomaly evolution for its strongest events at each of the grid points over Siberia. At each location, the amplification of the surface high is associated with formation of a blocking ridge in the upper troposphere. Over central and western Siberia, what may be called “wave-train (Atlantic-origin)” type is common, where a blocking ridge forms as a component of a quasi-stationary Rossby wave train propagating across the Eurasian continent. A cold air outbreak follows once anomalous surface cold air reaches the northeastern slope of the Tibetan Plateau. It is found through the potential vorticity (PV) inversion technique that interaction between the upper-level stationary Rossby wave train and preexisting surface cold anomalies is essential for the strong amplification of the surface high. Upper-level PV anomalies associated with the wave train reinforce the cold anticyclonic anomalies at the surface by inducing anomalous cold advection that counteracts the tendency of the thermal anomalies themselves to migrate eastward as surface thermal Rossby waves. The surface cold anomalies thus intensified, in turn, act to induce anomalous vorticity advection aloft that reinforces the blocking ridge and cyclonic anomalies downstream of it that constitute the propagating wave train. The baroclinic development of the anomalies through this vertical coupling is manifested as a significant upward flux of wave activity emanating from the surface cold anomalies, which may be interpreted as dissipative destabilization of the incoming external Rossby waves.


2020 ◽  
Vol 33 (1) ◽  
pp. 365-389 ◽  
Author(s):  
Lon L. Hood ◽  
Malori A. Redman ◽  
Wes L. Johnson ◽  
Thomas J. Galarneau

AbstractThe tropical Madden–Julian oscillation (MJO) excites a northward propagating Rossby wave train that largely determines the extratropical surface weather consequences of the MJO. Previous work has demonstrated a significant influence of the tropospheric El Niño–Southern Oscillation (ENSO) on the characteristics of this wave train. Here, composite analyses of ERA-Interim sea level pressure (SLP) and surface air temperature (SAT) data during the extended northern winter season are performed to investigate the additional role of stratospheric forcings [the quasi-biennial oscillation (QBO) and the 11-yr solar cycle] in modifying the wave train and its consequences. MJO phase composites of 20–100-day filtered data for the two QBO phases show that, similar to the cool phase of ENSO, the easterly phase of the QBO (QBOE) produces a stronger wave train and associated modulation of SLP and SAT anomalies. In particular, during MJO phases 5–7, positive SLP and negative SAT anomalies in the North Atlantic/Eurasian sector are enhanced during QBOE relative to the westerly phase of the QBO (QBOW). The opposite occurs during the earliest MJO phases. SAT anomalies over eastern North America are also more strongly modulated during QBOE. Although less certain because of the short data record, there is some evidence that the minimum phase of the solar cycle (SMIN) produces a similar increased modulation of SLP and SAT anomalies. The strongest modulations of SLP and SAT anomalies are produced when two or more of the forcings are superposed (e.g., QBOE/cool ENSO, SMIN/QBOE, etc.).


Sign in / Sign up

Export Citation Format

Share Document