scholarly journals Mechanisms of Intraseasonal Amplification of the Cold Siberian High

2005 ◽  
Vol 62 (12) ◽  
pp. 4423-4440 ◽  
Author(s):  
Koutarou Takaya ◽  
Hisashi Nakamura

Abstract Mechanisms of intraseasonal amplification of the Siberian high are investigated on the basis of composite anomaly evolution for its strongest events at each of the grid points over Siberia. At each location, the amplification of the surface high is associated with formation of a blocking ridge in the upper troposphere. Over central and western Siberia, what may be called “wave-train (Atlantic-origin)” type is common, where a blocking ridge forms as a component of a quasi-stationary Rossby wave train propagating across the Eurasian continent. A cold air outbreak follows once anomalous surface cold air reaches the northeastern slope of the Tibetan Plateau. It is found through the potential vorticity (PV) inversion technique that interaction between the upper-level stationary Rossby wave train and preexisting surface cold anomalies is essential for the strong amplification of the surface high. Upper-level PV anomalies associated with the wave train reinforce the cold anticyclonic anomalies at the surface by inducing anomalous cold advection that counteracts the tendency of the thermal anomalies themselves to migrate eastward as surface thermal Rossby waves. The surface cold anomalies thus intensified, in turn, act to induce anomalous vorticity advection aloft that reinforces the blocking ridge and cyclonic anomalies downstream of it that constitute the propagating wave train. The baroclinic development of the anomalies through this vertical coupling is manifested as a significant upward flux of wave activity emanating from the surface cold anomalies, which may be interpreted as dissipative destabilization of the incoming external Rossby waves.

2005 ◽  
Vol 62 (12) ◽  
pp. 4441-4449 ◽  
Author(s):  
Koutarou Takaya ◽  
Hisashi Nakamura

Abstract Intraseasonal amplification events of the surface Siberian high in winter are generally associated with blocking ridge formation in the upper troposphere. Composite analysis applied to the 20 strongest intraseasonal events of upper-level anticyclonic anomalies at every grid point over Siberia reveals that the blocking formation differs fundamentally between the east and west of the climatological upper-level trough over the Far East. To the west, what can be called “wave-train (Atlantic-origin)” type is common, where a blocking ridge develops from anomalies as a component of a quasi-stationary Rossby wave train propagating across the Eurasian continent under modest feedback forcing from transient eddies. To the east of the trough, what can be called “Pacific-origin” type dominates, where a blocking ridge forms in association with westward development of anticyclonic anomalies from the North Pacific under stronger feedback forcing from the Pacific storm track. Regardless of a particular type of blocking formation in the upper troposphere, a cold air outbreak tends to occur once anomalously cold air reaches the northeastern slope of the Tibetan Plateau.


2021 ◽  
Vol 34 (1) ◽  
pp. 397-414
Author(s):  
Guosen Chen

AbstractA recent study has revealed that the Madden–Julian oscillation (MJO) during boreal winter exhibits diverse propagation patterns that consist of four archetypes: standing MJO, jumping MJO, slow eastward propagating MJO, and fast eastward propagating MJO. This study has explored the diversity of teleconnection associated with these four MJO groups. The results reveal that each MJO group corresponds to distinct global teleconnections, manifested as diverse upper-tropospheric Rossby wave train patterns. Overall, the teleconnections in the fast and slow MJO are similar to those in the canonical MJO constructed by the real-time multivariate MJO (RMM) indices, while the teleconnections in the jumping and standing MJO generally lose similarities to those in the canonical MJO. The causes of this diversity are investigated using a linearized potential vorticity equation. The various MJO tropical heating patterns in different MJO groups are the main cause of the diverse MJO teleconnections, as they induce assorted upper-level divergent flows that act as Rossby-wave sources through advecting the background potential vorticity. The variation of the Asian jet could affect the teleconnections over the Pacific jet exit region, but it plays an insignificant role in causing the diversity of global teleconnections. The numerical investigation with a linear baroclinic model shows that the teleconnections can be interpreted as linear responses to the MJO’s diabatic heating to various degrees for different MJO groups, with the fast and slow MJO having higher linear skill than the jumping and standing MJO. The results have broad implications in the MJO’s tropical–extratropical interactions and the associated impacts on global weather and climate.


2019 ◽  
Vol 58 (11) ◽  
pp. 2523-2530
Author(s):  
Doo-Sun R. Park ◽  
Chang-Hoi Ho ◽  
Dasol Kim ◽  
Nam-Young Kang ◽  
Yeojin Han ◽  
...  

AbstractAir quality depends as much on large-scale tropospheric circulation as on the amount of pollutant emissions. Many studies have found a relationship between air quality and midlatitude synoptic weather systems. A stable low-level troposphere and airflow from polluted areas are conditions that favor air pollution in a region. However, few studies have focused on the possible remote effect of tropical cyclone (TC) activity in the tropics on air quality in the midlatitude East Asian countries. Here, we found that TCs in the South China Sea (SCS) can increase the concentration of particulate matter with aerodynamic diameters less than 10 μm (PM10) over South Korea through poleward-propagating Rossby waves. According to our analyses, intense divergence due to a TC causes a barotropic Rossby wave train from the SCS to the North Pacific Ocean. Anomalous highs over the Korean Peninsula (part of the Rossby wave train) result in stable air conditions and cause polluted air inflow to increase the PM10 concentration up to 65 μg m−3. Our finding suggests that TC activity in the tropics should be considered for more accurate forecasts of air quality in South Korea.


2021 ◽  
Author(s):  
Jingyi Li ◽  
Fei Li ◽  
Shengping He ◽  
Huijun Wang ◽  
Yvan J Orsolini

<p>The Tibetan Plateau (TP), referred to as the “Asian water tower”, contains one of the largest land ice masses on Earth. The local glacier shrinkage and frozen-water storage are strongly affected by variations in surface air temperature over the TP (TPSAT), especially in springtime. This study reveals a distinct out-of-phase connection between the February North Atlantic Oscillation (NAO) and March TPSAT, which is non-stationary and regulated by the warm phase of the Atlantic Multidecadal Variability (AMV+). The results show that during the AMV+, the negative phase of the NAO persists from February to March, and is accompanied by a quasi-stationary Rossby wave train trapped along a northward-shifted subtropical westerly jet stream across Eurasia, inducing an anomalous adiabatic descent that warms the TP. However, during the cold phase of the AMV, the negative NAO does not persist into March. The Rossby wave train propagates along the well-separated polar and subtropical westerly jets, and the NAO−TPSAT connection is broken. Further investigation suggests that the enhanced synoptic eddy and low-frequency flow (SELF) interaction over the North Atlantic in February and March during the AMV+, caused by the enhanced and southward-shifted storm track, help maintain the NAO anomaly pattern via positive eddy feedback. This study provides a new detailed perspective on the decadal variability of the North Atlantic−TP connections in late winter−early spring.</p>


2017 ◽  
Vol 30 (22) ◽  
pp. 9247-9266 ◽  
Author(s):  
Lei Song ◽  
Renguang Wu

A strong cold event hit eastern China around 24 January 2016 with surface air temperature reaching more than 10°C below the climatological mean in most regions of eastern China south of 40°N. A total of 37 strong cold events similar to the January 2016 event with temperature anomalies over eastern China exceeding −5°C have been identified during the winters from 1979/80 to 2015/16. A comparative analysis of events with surface temperature anomalies of the same intensity but limited to north of 40°N indicates that the southward invasion of cold air to eastern China south of 40°N is related to two factors. One is the latitudinal location of the upper-level wave train, the surface Siberian high, and the midtropospheric East Asian trough over the mid- to high-latitude Eurasian continent. The other is a subtropical upper-level wave train emanating from the midlatitude North Atlantic. The emergence of the subtropical wave train is related to the positive phase of the North Atlantic Oscillation (NAO). When the mid- to high-latitude wave train is located too far northward and the subtropical wave train induces an anomalous midtropospheric high over southern China, the East Asian trough does not extend southwestward and the Siberian high does not expand southeastward. In such a case, the cold air mainly affects northeastern China and northern Japan.


2016 ◽  
Vol 29 (20) ◽  
pp. 7215-7230 ◽  
Author(s):  
Wenting Hu ◽  
Anmin Duan ◽  
Yun Li ◽  
Bian He

Abstract This study examines the characteristics and mechanisms associated with the dominant intraseasonal oscillation (ISO) that controlled eastern Tibetan Plateau summer rainfall (ETPSR) over the period 1979–2011. The results of both power and wavelet spectrum analysis reveal that ETPSR follows a significant 7–20-day oscillation during most summers. The vertical structure of the ETPSR ISO in the dry phase is characterized by a vertical dipole pattern of geopotential height with a positive center on the eastern Tibetan Plateau (TP) and a negative center on the western TP. The wet phase shows the opposite characteristics to the dry phase. The transitions between the dry and wet phases during an ETPSR ISO cycle are related to a Rossby wave train that presents as large anomalous anticyclonic and cyclonic centers that alternate along the pathway from the eastern Atlantic to southern China via the TP. It corresponds to the evolution of the phase-independent wave-activity W, which implies an eastward/southeastward energy propagation of the ISO. The dominant modes of the daily 200-hPa geopotential height as identified by the rotated empirical orthogonal function (REOF) demonstrate that the different phases of the Rossby wave train influence the upper-level circulation over the eastern TP, which then impacts precipitation in the region. Furthermore, fluctuations in the eastern Atlantic may be the key factor for the propagation of the Rossby wave train that influences the upper-level circulation and rainfall variability over the eastern TP. Results from numerical experiments using an atmospheric general circulation model support the conclusion that the fluctuations over the eastern Atlantic contribute to the ISO of ETPSR.


2021 ◽  
pp. 1-40
Author(s):  
Jingyi Li ◽  
Fei Li ◽  
Shengping He ◽  
Huijun Wang ◽  
Yvan J Orsolini

AbstractThe Tibetan Plateau (TP), referred to as the “Asian water tower”, contains one of the largest land ice masses on Earth. The local glacier shrinkage and frozen-water storage are strongly affected by variations in surface air temperature over the TP (TPSAT), especially in springtime. This study reveals that the relationship between the February North Atlantic Oscillation (NAO) and March TPSAT is unstable with time and regulated by the phase of the Atlantic Multidecadal Variability (AMV). The significant out-of-phase connection occurs only during the warm phase of AMV (AMV+). The results show that during the AMV+, the negative phase of the NAO persists from February to March, and is accompanied by a quasi-stationary Rossby wave train trapped along a northward-shifted subtropical westerly jet stream across Eurasia, inducing an anomalous adiabatic descent that warms the TP. However, during the cold phase of the AMV, the negative NAO can not persist into March. The Rossby wave train propagates along the well-separated polar and subtropical westerly jets, and the NAO−TPSAT connection is broken. Further investigation suggests that the enhanced synoptic eddy and low frequency flow (SELF) interaction over the North Atlantic in February and March during the AMV+, caused by the enhanced and southward-shifted storm track, help maintain the NAO anomaly pattern via positive eddy feedback. This study provides a new detailed perspective on the decadal variability of the North Atlantic−TP connection in late winter−early spring.


2021 ◽  
Author(s):  
Jonathan D. Beverley ◽  
Steven J. Woolnough ◽  
Laura H. Baker ◽  
Stephanie J. Johnson ◽  
Antje Weisheimer ◽  
...  

AbstractThe circumglobal teleconnection (CGT) is an important mode of circulation variability, with an influence across many parts of the northern hemisphere. Here, we examine the excitation mechanisms of the CGT in the ECMWF seasonal forecast model, and the relationship between the Indian summer monsoon (ISM), the CGT and the extratropical northern hemisphere circulation. Results from relaxation experiments, in which the model is corrected to reanalysis in specific regions, suggest that errors over northwest Europe are more important in inhibiting the model skill at representing the CGT, in addition to northern hemisphere skill more widely, than west-central Asia and the ISM region, although the link between ISM precipitation and the extratropical circulation is weak in all experiments. Thermal forcing experiments in the ECMWF model, in which a heating is applied over India, suggest that the ISM does force an extratropical Rossby wave train, with upper tropospheric anticyclonic anomalies over east Asia, the North Pacific and North America associated with increased ISM heating. However, this eastward-propagating branch of the wave train does not project into Europe, and the response there occurs largely through westward-propagating Rossby waves. Results from barotropic model experiments show a response that is highly consistent with the seasonal forecast model, with similar eastward- and westward-propagating Rossby waves. This westward-propagating response is shown to be important in the downstream reinforcement of the wave train between Asia and North America.


2020 ◽  
Vol 33 (1) ◽  
pp. 365-389 ◽  
Author(s):  
Lon L. Hood ◽  
Malori A. Redman ◽  
Wes L. Johnson ◽  
Thomas J. Galarneau

AbstractThe tropical Madden–Julian oscillation (MJO) excites a northward propagating Rossby wave train that largely determines the extratropical surface weather consequences of the MJO. Previous work has demonstrated a significant influence of the tropospheric El Niño–Southern Oscillation (ENSO) on the characteristics of this wave train. Here, composite analyses of ERA-Interim sea level pressure (SLP) and surface air temperature (SAT) data during the extended northern winter season are performed to investigate the additional role of stratospheric forcings [the quasi-biennial oscillation (QBO) and the 11-yr solar cycle] in modifying the wave train and its consequences. MJO phase composites of 20–100-day filtered data for the two QBO phases show that, similar to the cool phase of ENSO, the easterly phase of the QBO (QBOE) produces a stronger wave train and associated modulation of SLP and SAT anomalies. In particular, during MJO phases 5–7, positive SLP and negative SAT anomalies in the North Atlantic/Eurasian sector are enhanced during QBOE relative to the westerly phase of the QBO (QBOW). The opposite occurs during the earliest MJO phases. SAT anomalies over eastern North America are also more strongly modulated during QBOE. Although less certain because of the short data record, there is some evidence that the minimum phase of the solar cycle (SMIN) produces a similar increased modulation of SLP and SAT anomalies. The strongest modulations of SLP and SAT anomalies are produced when two or more of the forcings are superposed (e.g., QBOE/cool ENSO, SMIN/QBOE, etc.).


2020 ◽  
Vol 33 (9) ◽  
pp. 3619-3633 ◽  
Author(s):  
Tingting Gong ◽  
Steven B. Feldstein ◽  
Sukyoung Lee

AbstractThe relationship between latent heating over the Greenland, Barents, and Kara Seas (GBKS hereafter) and Rossby wave propagation between the Arctic and midlatitudes is investigated using global reanalysis data. Latent heating is the focus because it is the most likely source of Rossby wave activity over the Arctic Ocean. Given that the Rossby wave time scale is on the order of several days, the analysis is carried out using a daily latent heating index that resembles the interdecadal latent heating trend during the winter season. The results from regression calculations find a trans-Arctic Rossby wave train that propagates from the subtropics, through the midlatitudes, into the Arctic, and then back into midlatitudes over a period of about 10 days. Upon entering the GBKS, this wave train transports moisture into the region, resulting in anomalous latent heat release. At high latitudes, the overlapping of a negative latent heating anomaly with an anomalous high is consistent with anomalous latent heat release fueling the Rossby wave train before it propagates back into the midlatitudes. This implies that the Rossby wave propagation from the Arctic into the midlatitudes arises from trans-Arctic wave propagation rather than from in situ generation. The method used indicates the variance of the trans-Arctic wave train, but not in situ generation, and implies that the variance of the former is greater than that of latter. Furthermore, GBKS sea ice concentration regression against the latent heating index shows the largest negative value six days afterward, indicating that sea ice loss contributes little to the latent heating.


Sign in / Sign up

Export Citation Format

Share Document