A practical comparison of photon correlation and cross-correlation spectroscopy in nanoparticle and microparticle size evaluation

2016 ◽  
Vol 295 (1) ◽  
pp. 67-74 ◽  
Author(s):  
Jana Burdíková ◽  
Filip Mravec ◽  
Jaromír Wasserbauer ◽  
Miloslav Pekař
2021 ◽  
Vol 118 (34) ◽  
pp. e2105826118
Author(s):  
Zixi Hu ◽  
Jeffrey J. Donatelli ◽  
James A. Sethian

Coefficients for translational and rotational diffusion characterize the Brownian motion of particles. Emerging X-ray photon correlation spectroscopy (XPCS) experiments probe a broad range of length scales and time scales and are well-suited for investigation of Brownian motion. While methods for estimating the translational diffusion coefficients from XPCS are well-developed, there are no algorithms for measuring the rotational diffusion coefficients based on XPCS, even though the required raw data are accessible from such experiments. In this paper, we propose angular-temporal cross-correlation analysis of XPCS data and show that this information can be used to design a numerical algorithm (Multi-Tiered Estimation for Correlation Spectroscopy [MTECS]) for predicting the rotational diffusion coefficient utilizing the cross-correlation: This approach is applicable to other wavelengths beyond this regime. We verify the accuracy of this algorithmic approach across a range of simulated data.


2021 ◽  
Vol 11 (13) ◽  
pp. 6179
Author(s):  
Felix Lehmkühler ◽  
Wojciech Roseker ◽  
Gerhard Grübel

X-ray photon correlation spectroscopy (XPCS) enables the study of sample dynamics between micrometer and atomic length scales. As a coherent scattering technique, it benefits from the increased brilliance of the next-generation synchrotron radiation and Free-Electron Laser (FEL) sources. In this article, we will introduce the XPCS concepts and review the latest developments of XPCS with special attention on the extension of accessible time scales to sub-μs and the application of XPCS at FELs. Furthermore, we will discuss future opportunities of XPCS and the related technique X-ray speckle visibility spectroscopy (XSVS) at new X-ray sources. Due to its particular signal-to-noise ratio, the time scales accessible by XPCS scale with the square of the coherent flux, allowing to dramatically extend its applications. This will soon enable studies over more than 18 orders of magnitude in time by XPCS and XSVS.


2020 ◽  
Vol 53 (19) ◽  
pp. 8233-8243
Author(s):  
Ronald M. Lewis ◽  
Grayson L. Jackson ◽  
Michael J. Maher ◽  
Kyungtae Kim ◽  
Suresh Narayanan ◽  
...  

2021 ◽  
Vol 14 (8) ◽  
pp. 757
Author(s):  
Iga Jakobowska ◽  
Frank Becker ◽  
Stefano Minguzzi ◽  
Kerrin Hansen ◽  
Björn Henke ◽  
...  

Blocking lactate export in the parasitic protozoan Plasmodium falciparum is a novel strategy to combat malaria. We discovered small drug-like molecules that inhibit the sole plasmodial lactate transporter, PfFNT, and kill parasites in culture. The pentafluoro-3-hydroxy-pent-2-en-1-one BH296 blocks PfFNT with nanomolar efficiency but an in vitro selected PfFNT G107S mutation confers resistance against the drug. We circumvented the mutation by introducing a nitrogen atom as a hydrogen bond acceptor site into the aromatic ring of the inhibitor yielding BH267.meta. The current PfFNT inhibitor efficiency values were derived from yeast-based lactate transport assays, yet direct affinity and binding kinetics data are missing. Here, we expressed PfFNT fused with a green fluorescent protein in human embryonic kidney cells and generated fluorescent derivatives of the inhibitors, BH296 and BH267.meta. Using confocal imaging, we confirmed the location of the proposed binding site at the cytosolic transporter entry site. We then carried out fluorescence cross-correlation spectroscopy measurements to assign true Ki-values, as well as kon and koff rate constants for inhibitor binding to PfFNT wildtype and the G107S mutant. BH296 and BH267.meta gave similar rate constants for binding to PfFNT wildtype. BH296 was inactive on PfFNT G107S, whereas BH267.meta bound the mutant protein albeit with weaker affinity than to PfFNT wildtype. Eventually, using a set of PfFNT inhibitor compounds, we found a robust correlation of the results from the biophysical FCCS binding assay to inhibition data of the functional transport assay.


2014 ◽  
Vol 2 ◽  
pp. 73-94 ◽  
Author(s):  
Markus Stana ◽  
Manuel Ross ◽  
Bogdan Sepiol

The new technique of atomic-scale X-ray Photon Correlation Spectroscopy (aXPCS) makesuse of a coherent X-ray beam to study the dynamics of various processes in condensed matter systems.Particularly atomistic migration mechanisms are still far from being understood in most of intermetallicalloys and in amorphous systems. Special emphasis must be given to the opportunity to measureatomistic diffusion at relatively low temperatures where such measurements were far out of reach withpreviously established methods. The importance of short-range order is demonstrated on the basis ofMonte Carlo simulations.


Sign in / Sign up

Export Citation Format

Share Document