scholarly journals Novel minimally invasive tape suture osteosynthesis for instabilities of the pubic symphysis: a biomechanical study

Author(s):  
Adrian Cavalcanti Kußmaul ◽  
Fanny Schwaabe ◽  
Manuel Kistler ◽  
Clara Gennen ◽  
Sebastian Andreß ◽  
...  

Abstract Introduction Open book fractures are challenging injuries oftentimes requiring surgical treatment. The current treatment of choice is symphyseal plating, which requires extensive surgery and entirely limits physiological movement of the symphyseal joint, frequently resulting in implant failure. Therefore, we investigated the biomechanical properties of a semi-rigid implant (modified SpeedBridge™) as a minimally invasive tape suture construct for the treatment of open book fractures and evaluated the superiority of two techniques of implementation: criss-cross vs. triangle technique. Materials and methods Nine synthetic symphyseal joints were dissected creating an open book fracture. The different osteosynthesis methods (plating, modified SpeedBridge™ in criss-cross/triangle technique) were then applied. All constructs underwent horizontal and vertical loading, simulating biomechanical forces while sitting, standing and walking. For statistical analysis, dislocation (mm) and stiffness (N/mm) were calculated. Results Symphyseal plating for the treatment of open book fractures proved to be a rigid osteosynthesis significantly limiting the physiological mobility of the symphyseal joint (dislocation: 0.08 ± 0.01 mm) compared to the tape sutures (dislocation: triangle technique 0.27 ± 0.07 mm, criss-cross technique 0.23 ± 0.05 mm) regarding horizontal tension (p < 0.01). Both modified SpeedBridge™ techniques showed sufficient biomechanical stability without one being superior to the other (p > 0.05 in all directions). Considering vertical loading, no statistical difference was found between all osteosynthesis methods (caudal: p = 0.41; cranial: p = 0.61). Conclusions Symphyseal plating proved to be the osteosynthesis method with the highest rigidity. The modified SpeedBridge™ as a semi-rigid suture construct provided statistically sufficient biomechanical stability while maintaining a minimum of symphyseal movement, consequently allowing ligamental healing of the injured joint without iatrogenic arthrodesis. Furthermore, both the criss-cross and the triangle technique displayed significant biomechanical stability without one method being superior.

Hand Surgery ◽  
2006 ◽  
Vol 11 (01n02) ◽  
pp. 93-99 ◽  
Author(s):  
Surut Jianmongkol ◽  
Geoffrey Hooper ◽  
Weerachai Kowsuwon ◽  
Tala Thammaroj

The looped square slip knot was introduced as a technique for skin closure to avoid the use of sharp instruments in suture removal after hand surgery. We compared the biomechanical properties of this knot with the simple surgical square knot. The ultimate strength of the looped square slip knot was significantly (p = 0.015) higher than the simple surgical knot. There was no significant difference between the two knots in mode of failure. Knot slippage or suture breakage did not occur in any samples when testing security by repetitive loading. Therefore, the looped square slip knot is a safe and convenient alternative to the two-throw surgical knot for use in hand surgery.


2022 ◽  
pp. 1-9

OBJECTIVE The traditional anterior approach for multilevel severe cervical ossification of the posterior longitudinal ligament (OPLL) is demanding and risky. Recently, a novel surgical procedure—anterior controllable antedisplacement and fusion (ACAF)—was introduced by the authors to deal with these problems and achieve better clinical outcomes. However, to the authors’ knowledge, the immediate and long-term biomechanical stability obtained after this procedure has never been evaluated. Therefore, the authors compared the postoperative biomechanical stability of ACAF with those of more traditional approaches: anterior cervical discectomy and fusion (ACDF) and anterior cervical corpectomy and fusion (ACCF). METHODS To determine and assess pre- and postsurgical range of motion (ROM) (2 Nm torque) in flexion-extension, lateral bending, and axial rotation in the cervical spine, the authors collected cervical areas (C1–T1) from 18 cadaveric spines. The cyclic fatigue loading test was set up with a 3-Nm cycled load (2 Hz, 3000 cycles). All samples used in this study were randomly divided into three groups according to surgical procedures: ACDF, ACAF, and ACCF. The spines were tested under the following conditions: 1) intact state flexibility test; 2) postoperative model (ACDF, ACAF, ACCF) flexibility test; 3) cyclic loading (n = 3000); and 4) fatigue model flexibility test. RESULTS After operations were performed on the cadaveric spines, the segmental and total postoperative ROM values in all directions showed significant reductions for all groups. Then, the ROMs tended to increase during the fatigue test. No significant crossover effect was detected between evaluation time and operation method. Therefore, segmental and total ROM change trends were parallel among the three groups. However, the postoperative and fatigue ROMs in the ACCF group tended to be larger in all directions. No significant differences between these ROMs were detected in the ACDF and ACAF groups. CONCLUSIONS This in vitro biomechanical study demonstrated that the biomechanical stability levels for ACAF and ACDF were similar and were both significantly greater than that of ACCF. The clinical superiority of ACAF combined with our current results showed that this procedure is likely to be an acceptable alternative method for multilevel cervical OPLL treatment.


2019 ◽  
Author(s):  
Peng zhao ◽  
Dawei Sun ◽  
Yaru Xiong ◽  
Ribo Zhuo

AbstractIntroductionThe incidence of Achilles tendon rupture shows a gradually increasing trend, which is mainly managed by minimally invasive treatment due to its advantages, such as low wound infection rate. At present, the firmness of the commonly applied minimally invasive suture method for Achilles tendon remains controversial. Our research group has developed a novel suture method for Achilles tendon, which has achieved favorable clinical outcomes. Therefore, this experiment aimed to explore the optimal approach to repair Achilles tendon rupture through comparing the biomechanical strength of the commonly used Achilles tendon suture methods currently.Materials and methods6 fresh frozen human cadaveric Achilles tendon specimens were sutured by three kinds of technique, and were tested through the cyclical loading after repair.ResultsResults of cyclical loading showed that, the repair using the new technique was stronger after 10 cycles, 1000 cycles, and rupture. Moreover, the new technique had displayed superior anti-deformation strength to that of the Ma-Griffith technique.ConclusionsOur experimental results demonstrate that, the new technique proposed by our research group can attain comparable biomechanical properties to those of the Krachow technique. However, the sample size in this study is small, and further clinical trials are warranted.


2019 ◽  
Author(s):  
David Desseauve ◽  
Laetitia FRADET ◽  
Robert B. GHERMAN ◽  
Yosra CHERNI ◽  
Bertrand GACHON ◽  
...  

Abstract BackgroundGuidelines and description about the achievement of the McRoberts manoeuvre are discordant, particularly concerning the need for abduction before the beginning of the manoeuvre. We sought to compare the biomechanical efficiency of the McRoberts’ manoeuvre, with and without thigh abduction.Methods In a postural comparative study, twenty-three gravidas > 32 weeks of gestational age and not in labour were assessed during three repetitions of two McRoberts’ manoeuvre that differed in terms of starting position. For the (i) McRoberts, the legs were initially placed in stirrups; for the (m) McRoberts, the legs were resting on the bed, with thighs in wide abduction. For each manoeuvre, flexion of the plane of the external conjugate of the pelvis on the spine (ANGce), hip flexion and abduction, were assessed using an optoelectronic motion capture system. Lumbar curve were assessed with Epionics Spine® system. Temporal parameters including movement duration or acceleration of the external conjugate were also computed. All values ​​obtained for the two types of manoeuvres were compared using a Wilcoxon matched-pairs signed-ranks test. The significance level was defined as p < 0.05.Results The starting position of McRoberts’ otherwise had no effect on the maximum ANGce ( p = 0.199), the minimal lordosis of the lumbar curve ( p = 0.474), or the maximal hip flexion ( p = 0.057). The other parameters were not statistically different according to the starting position ( p > 0.005).Conclusion Regardless of the starting position, the McRoberts’ manoeuvre allows ascension of the pubic symphysis and reduction of the lumbar lordosis. This results imply that the McRoberts’ manoeuvre could be performed with the legs initially placed in the stirrups.


Sensor Review ◽  
2018 ◽  
Vol 38 (4) ◽  
pp. 405-411
Author(s):  
Zhanshe Guo ◽  
Zhaojun Guo ◽  
Xiangdang Liang ◽  
Shen Liu

Purpose Biomechanical properties of bones and fixators are important. The aim of this study was to develop a new device to simulate the real mechanical environment and to evaluate biomechanical properties of the bone with a fixation device, including the static force and the fatigue characters. Design/methodology/approach In this paper, the device is mainly composed of three parts: pull-pressure transmission system, bending force applying system and torsion applying system, which can successfully simulate the pre-introduced pull-pressure force, bending force and torsion force, respectively. To prove the feasibility of the design, theoretical analysis is used. It is concluded from the simulated result that this scheme of design can successfully satisfy the request of the evaluation. Findings Finally, on the basis of the force sensor calibration, the static force experiment and fatigue experiment are carried out using the tibia of the sheep as the specimen. It is concluded from the result that the relationship between the micro displacement and the applied axial force is nearly linear. Under the condition of 1 Hz in frequency, 500 N in loading force and 18,000 reciprocating cycles, the bone fixator can still be in good condition, which proves the feasibility of the design. Originality/value Biomechanical properties of bones and fixators are studied by researchers. However, few simulate a real force environment and combine forces in different directions. So a novel system is designed and fabricated to evaluate the biomechanical properties of the bones and fixators. Results of the experiments show that this new system is reliable and stable, which can support the biomechanical study and clinical treatment.


2020 ◽  
Vol 77 ◽  
pp. 105009 ◽  
Author(s):  
Tobias Fritz ◽  
Laura Mettelsiefen ◽  
Friedemann Strobel ◽  
Benedikt J. Braun ◽  
Steven C. Herath ◽  
...  

2015 ◽  
Vol 2015 ◽  
pp. 1-8 ◽  
Author(s):  
Guo-Chun Zha ◽  
Jun-Ying Sun ◽  
Sheng-Jie Dong ◽  
Wen Zhang ◽  
Zong-Ping Luo

This study aims to assess the biomechanical properties of a novel fixation system (named AFRIF) and to compare it with other five different fixation techniques for quadrilateral plate fractures. This in vitro biomechanical experiment has shown that the multidirectional titanium fixation (MTF) and pelvic brim long screws fixation (PBSF) provided the strongest fixation for quadrilateral plate fracture; the better biomechanical performance of the AFRIF compared with the T-shaped plate fixation (TPF), L-shaped plate fixation (LPF), and H-shaped plate fixation (HPF); AFRIF gives reasonable stability of treatment for quadrilateral plate fracture and may offer a better solution for comminuted quadrilateral plate fractures or free floating medial wall fracture and be reliable in preventing protrusion of femoral head.


2002 ◽  
Vol 97 (3) ◽  
pp. 346-349 ◽  
Author(s):  
Aziz Rassi-Neto ◽  
Antonio Shimano

Object. A pullout strength biomechanical study was performed in 20 fresh swine vertebral bodies in which titanium expander (Group 1) and conventional screws (Group 2) were placed. Methods. The screws were inserted into the anterosuperior portion of the anterior spine, and assessment was performed after application of loads. The expander screw is composed of two parts: 1) a cover with an external portion comprising tight thin threads; and 2) a compact internal screw inserted through the cover that allows expansion. In the comparative study between the screws in Groups 1 and 2 maximum load was assessed, and the intergroup difference was significant (p = 0.00001 [t-test]); regarding load at the elasticity threshold, a significant difference was also observed (p = 0.0063). With regard to rigidity (stiffness), there was a tendency in both groups toward significance (p = 0.069). With regard to absorbed energy in the elastic phase, statistical analysis showed a significant intergroup difference (p = 0.00439). The expander screw showed a greater load-bearing capacity than the conventional screw. Adhesion to bone in relation to the applied load and displacement was greater (significant tendency) in the expander screw group than in the conventional screw group. Conclusions. The expander screws exhibited a greater capacity to absorb energy in the elastic phase. They adhered better to bone, were easy to insert, and, if necessary, were simple to remove.


2007 ◽  
Vol 35 (6) ◽  
pp. 955-961 ◽  
Author(s):  
Mathias Wellmann ◽  
Thore Zantop ◽  
Andre Weimann ◽  
Michael J. Raschke ◽  
Wolf Petersen

Background The conventional coracoclavicular ligament augmentation with a single polydioxanone loop has been shown to have some pivotal disadvantages. Hypothesis A minimally invasive flip button/polydioxanone repair provides similar biomechanical properties to the conventional polydioxanone cerclage around the coracoid. However, the authors expected a difference in linear stiffness, ultimate load, and permanent elongation between suture anchor repairs and polydioxanone repairs. Study Design Controlled laboratory study. Methods The tensile fixation strength of 4 different minimally invasive repairs was tested in a porcine metatarsal model: (1) 1.3-mm single polydioxanone cerclage with a subcoracoidal flip button fixation, (2) 1.3-mm single polydioxanone cerclage, (3) Twinfix Ti 3.5-mm/Ultrabraid 2-suture anchor, and (4) Twinfix Ti 5.0-mm/Ultrabraid 2-suture anchor. The testing protocol included cyclic superoinferior loading and a subsequent load to failure trial. Results The flip button repair (646 N) and the conventional polydioxanone banding (663 N) revealed significant higher ultimate loads than did the suture anchor repairs (295 and 331 N, respectively; P < .001), whereas no significant differences were found for the elongation behavior under cyclic loading. Conclusion There was no significant difference between the 2 polydioxanone repairs. The ultimate load of the flip button procedure reaches the level of the native coracoclavicular ligament complex as it has been quantified in the literature. Clinical Relevance Although the biomechanical results comparing a minimally invasive flip button procedure versus a conventional polydioxanone cerclage are similar, the authors recommend the flip button procedure because of its minimally invasive approach and the secure subcoracoidal fixation technique with a minimized risk of anterior loop dislocation and neurovascular damage.


Sign in / Sign up

Export Citation Format

Share Document