A COMPARATIVE BIOMECHANICAL STUDY OF THE LOOPED SQUARE SLIP KNOT AND THE SIMPLE SURGICAL KNOT

Hand Surgery ◽  
2006 ◽  
Vol 11 (01n02) ◽  
pp. 93-99 ◽  
Author(s):  
Surut Jianmongkol ◽  
Geoffrey Hooper ◽  
Weerachai Kowsuwon ◽  
Tala Thammaroj

The looped square slip knot was introduced as a technique for skin closure to avoid the use of sharp instruments in suture removal after hand surgery. We compared the biomechanical properties of this knot with the simple surgical square knot. The ultimate strength of the looped square slip knot was significantly (p = 0.015) higher than the simple surgical knot. There was no significant difference between the two knots in mode of failure. Knot slippage or suture breakage did not occur in any samples when testing security by repetitive loading. Therefore, the looped square slip knot is a safe and convenient alternative to the two-throw surgical knot for use in hand surgery.

2002 ◽  
Vol 97 (3) ◽  
pp. 346-349 ◽  
Author(s):  
Aziz Rassi-Neto ◽  
Antonio Shimano

Object. A pullout strength biomechanical study was performed in 20 fresh swine vertebral bodies in which titanium expander (Group 1) and conventional screws (Group 2) were placed. Methods. The screws were inserted into the anterosuperior portion of the anterior spine, and assessment was performed after application of loads. The expander screw is composed of two parts: 1) a cover with an external portion comprising tight thin threads; and 2) a compact internal screw inserted through the cover that allows expansion. In the comparative study between the screws in Groups 1 and 2 maximum load was assessed, and the intergroup difference was significant (p = 0.00001 [t-test]); regarding load at the elasticity threshold, a significant difference was also observed (p = 0.0063). With regard to rigidity (stiffness), there was a tendency in both groups toward significance (p = 0.069). With regard to absorbed energy in the elastic phase, statistical analysis showed a significant intergroup difference (p = 0.00439). The expander screw showed a greater load-bearing capacity than the conventional screw. Adhesion to bone in relation to the applied load and displacement was greater (significant tendency) in the expander screw group than in the conventional screw group. Conclusions. The expander screws exhibited a greater capacity to absorb energy in the elastic phase. They adhered better to bone, were easy to insert, and, if necessary, were simple to remove.


2019 ◽  
Vol 4 (4) ◽  
pp. 2473011419S0022
Author(s):  
Justin Hopkins ◽  
Kevin Nguyen ◽  
Nasser Heyrani ◽  
Trevor Shelton ◽  
Christopher Kreulen ◽  
...  

Category: Midfoot/Forefoot, Trauma Introduction/Purpose: Lisfranc injuries occurring between the medial cuneiform and base of the 2nd metatarsal require anatomic fixation. Suture button and screws are standard techniques for fixation, but the screw may decrease physiologic motion, whereas suture buttons may cause increased soft tissue irritation and iatrogenic cartilage damage. Potential benefits of the InternalBrace include physiologic motion, decreased iatrogenic damage, collagen ingrowth, limited bony erosion and decreased soft tissue irritation. In light of these potential benefits, no studies have investigated the biomechanical properties of the InternalBrace in a Lisfranc injury model. However, it is unknown whether there is significant difference in the biomechanical properties of the IB compared to the screw, or SB during load to failure, and cyclical loading. Methods: Three groups of sawbones were fixed together with either a 3.5 mm screw, SB, or IB, composed of a curved button, fibertape, and 4.75 mm biotenodesis screw. Sawbone constructs were held in a mechanical testing system (Model 809, MTS Systems Corp, Minneapolis MN). The first three groups of 10 were loaded in axial tension at 0.5mm/sec until failure to determine load-displacement data. Yield, stiffness, ultimate strength (US), yield energy, post-yield energy and ultimate strength energy were calculated. Three more groups of 8 constructs were loaded in-vitro at cyclical physiologic loads until displacement of 1.5 mm occurred. Constructs were first loaded for 10,000 cycles at 69 N (estimate for 50% body weight or assisted walking). Surviving specimens were loaded at 138 N (normal walk) for an additional 10,000 cycles and then 207 N (jog) for an additional 10,000 cycles. Displacement was recorded. The biomechanical properties were then compared between groups. Results: When loaded in axial tension at 0.5mm/sec until failure, the screw was found to be the stiffest construct (2,240 N/mm), while the InternalBrace (200 N/mm) was stiffer than the suture button (133 N/mm). Qualitatively, the InternalBrace was also found to hold load more consistently and for larger displacement prior to failure when compared to the suture button. Cyclic loading was performed with 10,000 cycles of 69 N, 138 N, and 207 N. The screw had the greatest resistance to fatigue. The InternalBrace maintained stiffness as well or better than the suture button, but the fatigue life was shorter than that of the suture button. Conclusion: To our knowledge, the biomechanical properties of the IB have not been compared to screw and SB for ligamentous lisfranc injuries. This study gives valuable information about the mechanical integrity of InternalBrace and supports continued use. However, further studies are warranted before making conclusions regarding early weight bearing.


2021 ◽  
Vol 104 (9) ◽  
pp. 1447-1451

Objective: To compare the biomechanical properties of the Chinese finger (CF) suture, a needleless suture technique, with the baseball stitch (BS) suture, a needled suture technique, in a multi-strand model by using a 4-strand tendon model. Additionally, the BS was compared with the serial rolling hitch (RH), a locking needleless suture technique. Materials and Methods: 4-strand grafts, made from two 20-cm fresh porcine toe extensors, were used in all three groups. After the grafts were sutured, pretension was applied with a load of 100-N distraction force for five minutes. After the tendon elongation was measured before and after the pretension, the distraction force was continued until the constructed graft failed. Stress-strain relationship graphs were recorded by universal testing machine (UTM), distributing to the calculation of percentage on tendon elongation, stiffness, and load-to-failure. Results: The BS had significantly higher load of failure than the CF (p=0.001) but no significant difference when compared with the RH. Comparing between BS, CF, and RH, there were no significant difference in stiffness and percentage of tendon elongation. In modes of failure, there was evidence of knot slipping in CF in six of six cases and graft strangulation in RH in four of six cases. Conclusion: Multi-strand model BS, a needled suture, had a higher load to failure than CF, a needleless suture. Moreover, needleless sutures had serious modes of failure, which were knot slipping and strangulation of graft by the suture material. Therefore, needleless suture technique for multi-strand tendon graft preparation was not recommended. Keywords: Tendon preparation; Multi-Strand; Needled suture; Needleless suture; Chinese finger; Baseball stitch; Rolling Hitch; Biomechanical study; Graft elongation; Load to failure


2019 ◽  
Vol 33 (03) ◽  
pp. 314-318 ◽  
Author(s):  
Recep Kurnaz ◽  
Murat Aşçı ◽  
Selim Ergün ◽  
Umut Akgün ◽  
Taner Güneş

AbstractOne of the factors affecting the healing of a meniscus repair is the primary stability of the tear. The purpose of this study is to compare single and double vertical loop (SVL vs. DVL) meniscal suture configurations by measuring elongation under cyclic loading and failure properties under ultimate load. We hypothesized that DVL configuration would have superior biomechanical properties than SVL. Twenty-two intact lateral menisci were harvested from patients who required total knee arthroplasty. A 20-mm longitudinal full-thickness cut was made 3 mm from the peripheral rim to simulate a longitudinal tear. Two groups were formed and group randomization was done according to patient age and gender (SVL group: mean age 68.3 years [range, 58–78 years], five males, six females; DVL group: mean age 67.4 years [range, 59–77 years], six males, five females). Cyclic loading was performed between 5 and 30 N at a frequency of 1 Hz for 500 cycles. Then, the meniscus repair construct was loaded until failure. Statistical analysis was performed using the t-test and the Mann–Whitney's U-test. During the early phases of cyclic loading, three specimens from each group failed because of suture pull out and are excluded from the study. At the end of 500 cycles, there was significantly less displacement in the DVL group than the SVL group (6.13 ± 1.04 vs. 9.3 ± 2.59 mm) (p < 0.05). No significant difference was found between groups regarding ultimate load to failure measurements (p > 0.05). All specimens in SVL and five specimens in DVL groups failed in the form of suture pull out from the meniscus tissue. Longitudinal meniscal tears repaired with DVL configuration had less elongation value under cyclic loading compared with SVL configuration. Because of its superior biomechanical properties, it would be more secure to repair large and instable longitudinal meniscal tears by the DVL technique. This is a level II study.


Author(s):  
A. E. Chernikova ◽  
Yu. P. Potekhina

Introduction. An osteopathic examination determines the rate, the amplitude and the strength of the main rhythms (cardiac, respiratory and cranial). However, there are relatively few studies in the available literature dedicated to the influence of osteopathic correction (OC) on the characteristics of these rhythms.Goal of research — to study the influence of OC on the rate characteristics of various rhythms of the human body.Materials and methods. 88 adult osteopathic patients aged from 18 to 81 years were examined, among them 30 men and 58 women. All patients received general osteopathic examination. The rate of the cranial rhythm (RCR), respiratory rate (RR) heart rate (HR), the mobility of the nervous processes (MNP) and the connective tissue mobility (CTM) were assessed before and after the OC session.Results. Since age varied greatly in the examined group, a correlation analysis of age-related changes of the assessed rhythms was carried out. Only the CTM correlated with age (r=–0,28; p<0,05) in a statistically significant way. The rank dispersion analysis of Kruskal–Wallis also showed statistically significant difference in this indicator in different age groups (p=0,043). With the increase of years, the CTM decreases gradually. After the OC, the CTM, increased in a statistically significant way (p<0,0001). The RCR varied from 5 to 12 cycles/min in the examined group, which corresponded to the norm. After the OC, the RCR has increased in a statistically significant way (p<0,0001), the MNP has also increased (p<0,0001). The initial heart rate in the subjects varied from 56 to 94 beats/min, and in 15 % it exceeded the norm. After the OC the heart rate corresponded to the norm in all patients. The heart rate and the respiratory rate significantly decreased after the OC (р<0,0001).Conclusion. The described biorhythm changes after the OC session may be indicative of the improvement of the nervous regulation, of the normalization of the autonomic balance, of the improvement of the biomechanical properties of body tissues and of the increase of their mobility. The assessed parameters can be measured quickly without any additional equipment and can be used in order to study the results of the OC.


2021 ◽  
Vol 9 (3) ◽  
pp. 232596712198928
Author(s):  
Heath P. Gould ◽  
Nicholas R. Delaney ◽  
Brent G. Parks ◽  
Roshan T. Melvani ◽  
Richard Y. Hinton

Background: Femoral-sided graft fixation in medial patellofemoral ligament (MPFL) reconstruction is commonly performed using an interference screw (IS). However, the IS method is associated with several clinical disadvantages that may be ameliorated by the use of suture anchors (SAs) for femoral fixation. Purpose: To compare the load to failure and stiffness of SAs versus an IS for the femoral fixation of a semitendinosus autograft in MPFL reconstruction. Study Design: Controlled laboratory study. Methods: Based on a priori power analysis, a total of 6 matched pairs of cadaveric knees were included. Specimens in each pair were randomly assigned to receive either SA or IS fixation. After an appropriate reconstruction procedure, the looped end of the MPFL graft was pulled laterally at a rate of 6 mm/s until construct failure. The best-fit slope of the load-displacement curve was then used to calculate the stiffness (N/mm) in a post hoc fashion. A paired t test was used to compare the mean load to failure and the mean stiffness between groups. Results: No significant difference in load to failure was observed between the IS and the SA fixation groups (294.0 ± 61.1 vs 250.0 ± 55.9; P = .352), although the mean stiffness was significantly higher in IS specimens (34.5 ± 9.6 vs 14.7 ± 1.2; P = .004). All IS reconstructions failed by graft pullout from the femoral tunnel, whereas 5 of the 6 SA reconstructions failed by anchor pullout. Conclusion: In this biomechanical study using a cadaveric model of MPFL reconstruction, SA femoral fixation was not significantly different from IS fixation in terms of load to failure. The mean load-to-failure values for both reconstruction techniques were greater than the literature-reported values for the native MPFL. Clinical Relevance: These results suggest that SAs are a biomechanically viable alternative for femoral-sided graft fixation in MPFL reconstruction.


2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Ádám László Nagy ◽  
Zsolt Tóth ◽  
Tamás Tarjányi ◽  
Nándor Tamás Práger ◽  
Zoltán Lajos Baráth

Abstract Background In this research the biomechanical properties of a bone model was examined. Porcine ribs are used as experimental model. The objective of this research was to investigate and compare the biomechanical properties of the bone model before and after implant placement. Methods The bone samples were divided in three groups, Group 1 where ALL-ON-FOUR protocol was used during pre-drilling and placing the implants, Group 2 where ALL-ON-FOUR protocol was used during pre-drilling, and implants were not placed, and Group 3 consisting of intact bones served as a control group. Static and dynamic loading was applied for examining the model samples. Kruskal–Wallis statistical test and as a post-hoc test Mann–Whitney U test was performed to analyze experimental results. Results According to the results of the static loading, there was no significant difference between the implanted and original ribs, however, the toughness values of the bones decreased largely on account of predrilling the bones. The analysis of dynamic fatigue measurements by Kruskal–Wallis test showed significant differences between the intact and predrilled bones. Conclusion The pre-drilled bone was much weaker in both static and dynamic tests than the natural or implanted specimens. According to the results of the dynamic tests and after a certain loading cycle the implanted samples behaved the same way as the control samples, which suggests that implantation have stabilized the skeletal bone structure.


Author(s):  
Johanna C. Wagner ◽  
Anja Wetz ◽  
Armin Wiegering ◽  
Johan F. Lock ◽  
Stefan Löb ◽  
...  

Abstract Purpose Traditionally, previous wound infection was considered a contraindication to secondary skin closure; however, several case reports describe successful secondary wound closure of wounds “preconditioned” with negative pressure wound therapy (NPWT). Although this has been increasingly applied in daily practice, a systematic analysis of its feasibility has not been published thus far. The aim of this study was to evaluate secondary skin closure in previously infected abdominal wounds following treatment with NPWT. Methods Single-center retrospective analysis of patients with infected abdominal wounds treated with NPWT followed by either secondary skin closure referenced to a group receiving open wound therapy. Endpoints were wound closure rate, wound complications (such as recurrent infection or hernia), and perioperative data (such as duration of NPWT or hospitalization parameters). Results One hundred ninety-eight patients during 2013–2016 received a secondary skin closure after NPWT and were analyzed and referenced to 67 patients in the same period with open wound treatment after NPWT. No significant difference in BMI, chronic immunosuppressive medication, or tobacco use was found between both groups. The mean duration of hospital stay was 30 days with a comparable duration in both patient groups (29 versus 33 days, p = 0.35). Interestingly, only 7.7% of patients after secondary skin closure developed recurrent surgical site infection and in over 80% of patients were discharged with closed wounds requiring only minimal outpatient wound care. Conclusion Surgical skin closure following NPWT of infected abdominal wounds is a good and safe alternative to open wound treatment. It prevents lengthy outpatient wound therapy and is expected to result in a higher quality of life for patients and reduce health care costs.


2012 ◽  
Vol 38 (4) ◽  
pp. 418-423 ◽  
Author(s):  
E. McDonald ◽  
J. A. Gordon ◽  
J. M. Buckley ◽  
L. Gordon

Our goal was to investigate and compare the mechanical properties of multifilament stainless steel suture (MFSS) and polyethylene multi-filament core FiberWire in flexor tendon repairs. Flexor digitorum profundus tendons were repaired in human cadaver hands with either a 4-strand cruciate cross-lock repair or 6-strand modified Savage repair using 4-0 and 3-0 multifilament stainless steel or FiberWire. The multifilament stainless steel repairs were as strong as those performed with FiberWire in terms of ultimate load and load at 2 mm gap. This study suggests that MFSS provides as strong a repair as FiberWire. The mode of failure of the MFSS occurred by the suture pulling through the tendon, which suggests an advantage in terms of suture strength.


Sensor Review ◽  
2018 ◽  
Vol 38 (4) ◽  
pp. 405-411
Author(s):  
Zhanshe Guo ◽  
Zhaojun Guo ◽  
Xiangdang Liang ◽  
Shen Liu

Purpose Biomechanical properties of bones and fixators are important. The aim of this study was to develop a new device to simulate the real mechanical environment and to evaluate biomechanical properties of the bone with a fixation device, including the static force and the fatigue characters. Design/methodology/approach In this paper, the device is mainly composed of three parts: pull-pressure transmission system, bending force applying system and torsion applying system, which can successfully simulate the pre-introduced pull-pressure force, bending force and torsion force, respectively. To prove the feasibility of the design, theoretical analysis is used. It is concluded from the simulated result that this scheme of design can successfully satisfy the request of the evaluation. Findings Finally, on the basis of the force sensor calibration, the static force experiment and fatigue experiment are carried out using the tibia of the sheep as the specimen. It is concluded from the result that the relationship between the micro displacement and the applied axial force is nearly linear. Under the condition of 1 Hz in frequency, 500 N in loading force and 18,000 reciprocating cycles, the bone fixator can still be in good condition, which proves the feasibility of the design. Originality/value Biomechanical properties of bones and fixators are studied by researchers. However, few simulate a real force environment and combine forces in different directions. So a novel system is designed and fabricated to evaluate the biomechanical properties of the bones and fixators. Results of the experiments show that this new system is reliable and stable, which can support the biomechanical study and clinical treatment.


Sign in / Sign up

Export Citation Format

Share Document