scholarly journals Serum neurofilament light chain is a discriminative biomarker between frontotemporal lobar degeneration and primary psychiatric disorders

2019 ◽  
Vol 267 (1) ◽  
pp. 162-167 ◽  
Author(s):  
Kasper Katisko ◽  
Antti Cajanus ◽  
Olli Jääskeläinen ◽  
Aleksi Kontkanen ◽  
Päivi Hartikainen ◽  
...  

Abstract Due to the significant clinical overlap between frontotemporal lobar degeneration (FTLD) spectrum disorders and late-onset primary psychiatric disorders (PPD), diagnostic biomarkers reflecting the different underlying pathophysiologies are urgently needed. Thus far, elevated cerebrospinal fluid (CSF) levels of neurofilament light chain (NfL) have been reported in various neurological conditions. Furthermore, recent advancements in ultrasensitive analytical methods (e.g., single molecule array, Simoa) have enabled sensitive and less invasive NfL detection also from blood samples. In this study, we evaluated the potential of serum NfL (sNfL) as a diagnostic tool between FTLD and PPD. We analyzed sNfL levels with Simoa from 125 participants including patients from FTLD (n = 91) and PPD (n = 34) spectra. Our results show that sNfL levels are higher in the FTLD group compared to the PPD group as well as in separate clinical subtypes of FTLD compared to different psychiatric manifestations (i.e., mood or psychotic disorders). At single-subject level, discrimination between FTLD and PPD was possible with 80% sensitivity and 85% specificity (AUC = 0.850, 95% CI 0.776–0.923), and between behavioral variant frontotemporal dementia (bvFTD) and PPD with 79% sensitivity and 85% specificity (AUC = 0.830, 95% CI 0.732–0.908). These findings highlight the potential of sNfL as a discriminating biomarker for FTLD over PPD in patients with wide-ranging behavioral, psychiatric and cognitive symptoms.

2021 ◽  
Vol 13 ◽  
Author(s):  
Helena Sophia Gleerup ◽  
Federica Sanna ◽  
Peter Høgh ◽  
Joel Simrén ◽  
Kaj Blennow ◽  
...  

Neurodegeneration and axonal injury result in an increasing release of neurofilament light chain (NfL) into bodily fluids, including cerebrospinal fluid (CSF) and blood. Numerous studies have shown that NfL levels in CSF and blood are increased in neurodegenerative disorders and monitor neurodegeneration. Saliva is an easily accessible biofluid that could be utilized as a biofluid measurement of Alzheimer’s disease (AD) biomarkers. In this study, for the first time, salivary NfL was measured and compared to plasma NfL in a consecutive cohort of patients referred to cognitive assessments. In two mixed memory clinic cohorts, saliva samples were taken from 152 patients, AD (n = 49), mild cognitive impairment (MCI) (n = 47), non-AD (n = 56), and also 17 healthy controls. In addition, 135 also had a matching plasma sample. All saliva and plasma samples were analyzed for NfL, and the association between saliva and plasma NfL and CSF levels of total tau (t-tau), phosphorylated tau (p-tau), and beta amyloid 1–42 (Aβ42) were investigated. In total, 162/169 had quantifiable levels of salivary NfL by single molecule array (Simoa). No statistically significant differences were found in salivary NfL concentration across the diagnostic groups, but as expected, significant increases were found for plasma NfL in dementia cases (P < 0.0001). There was no association between saliva and plasma NfL levels. Furthermore, saliva NfL did not correlate with CSF Aβ42, p-tau, or tau concentrations. In conclusion, NfL is detectable in saliva but does not reflect neurodegeneration in the brain.


2021 ◽  
pp. jnnp-2021-326914
Author(s):  
Dario Saracino ◽  
Karim Dorgham ◽  
Agnès Camuzat ◽  
Daisy Rinaldi ◽  
Armelle Rametti-Lacroux ◽  
...  

ObjectiveNeurofilament light chain (NfL) is a promising biomarker in genetic frontotemporal dementia (FTD) and amyotrophic lateral sclerosis (ALS). We evaluated plasma neurofilament light chain (pNfL) levels in controls, and their longitudinal trajectories in C9orf72 and GRN cohorts from presymptomatic to clinical stages.MethodsWe analysed pNfL using Single Molecule Array (SiMoA) in 668 samples (352 baseline and 316 follow-up) of C9orf72 and GRN patients, presymptomatic carriers (PS) and controls aged between 21 and 83. They were longitudinally evaluated over a period of >2 years, during which four PS became prodromal/symptomatic. Associations between pNfL and clinical–genetic variables, and longitudinal NfL changes, were investigated using generalised and linear mixed-effects models. Optimal cut-offs were determined using the Youden Index.ResultspNfL levels increased with age in controls, from ~5 to~18 pg/mL (p<0.0001), progressing over time (mean annualised rate of change (ARC): +3.9%/year, p<0.0001). Patients displayed higher levels and greater longitudinal progression (ARC: +26.7%, p<0.0001), with gene-specific trajectories. GRN patients had higher levels than C9orf72 (86.21 vs 39.49 pg/mL, p=0.014), and greater progression rates (ARC:+29.3% vs +24.7%; p=0.016). In C9orf72 patients, levels were associated with the phenotype (ALS: 71.76 pg/mL, FTD: 37.16, psychiatric: 15.3; p=0.003) and remarkably lower in slowly progressive patients (24.11, ARC: +2.5%; p=0.05). Mean ARC was +3.2% in PS and +7.3% in prodromal carriers. We proposed gene-specific cut-offs differentiating patients from controls by decades.ConclusionsThis study highlights the importance of gene-specific and age-specific references for clinical and therapeutic trials in genetic FTD/ALS. It supports the usefulness of repeating pNfL measurements and considering ARC as a prognostic marker of disease progression.Trial registration numbersNCT02590276 and NCT04014673.


2020 ◽  
Author(s):  
Katheryn A.Q. Cousins ◽  
Jeffrey S. Phillips ◽  
David J. Irwin ◽  
Edward B. Lee ◽  
David A. Wolk ◽  
...  

2021 ◽  
pp. 135245852110323
Author(s):  
Jens Kuhle ◽  
Nadia Daizadeh ◽  
Pascal Benkert ◽  
Aleksandra Maceski ◽  
Christian Barro ◽  
...  

Background: Alemtuzumab efficacy and safety was demonstrated in CARE-MS I and extension studies (CAMMS03409; TOPAZ). Objective: Evaluate serum neurofilament light chain (sNfL) in CARE-MS I patients and highly active disease (HAD) subgroup, over 7 and 2 years for alemtuzumab and subcutaneous interferon beta-1a (SC IFNB-1a), respectively. Methods: Patients received SC IFNB-1a 44 µg 3×/week or alemtuzumab 12 mg/day at baseline and month 12, with further as-needed 3-day courses. sNfL was measured using single-molecule array (Simoa™). HAD definition was ⩾2 relapses in year before randomization and ⩾1 baseline gadolinium-enhancing lesion. Results: Baseline median sNfL levels were similar in alemtuzumab ( n = 354) and SC IFNB-1a–treated ( n = 159) patients (31.7 vs 31.4 pg/mL), but decreased with alemtuzumab versus SC IFNB-1a until year 2 (Y2; 13.2 vs 18.7 pg/mL; p < 0.0001); 12.7 pg/mL for alemtuzumab at Y7. Alemtuzumab-treated patients had sNfL at/below healthy control median at Y2 (72% vs 47%; p < 0.0001); 73% for alemtuzumab at Y7. HAD patients ( n = 102) had higher baseline sNfL (49.4 pg/mL) versus overall population; alemtuzumab HAD patients attained similar levels (Y2, 12.8 pg/mL; Y7, 12.7 pg/mL; 75% were at/below control median at Y7). Conclusion: Alemtuzumab was superior to SC IFNB-1a in reducing sNfL, with levels in alemtuzumab patients remaining stable through Y7. ClinicalTrials.gov identifier: NCT00530348, NCT00930553, NCT02255656


2020 ◽  
Vol 17 (1) ◽  
Author(s):  
Ngoc Dung Le ◽  
Lukas Muri ◽  
Denis Grandgirard ◽  
Jens Kuhle ◽  
David Leppert ◽  
...  

Abstract Background Pneumococcal meningitis (PM) remains a global public health concern and affects all age groups. If acquired during infancy or childhood, permanent neurofunctional deficits including cognitive impairment, cerebral palsy, and secondary epilepsy are typical sequelae of neuronal injury. Determination of patients at risk for the development of brain injury and subsequent neurofunctional sequelae could help to identify patients for focused management. Neurofilament light chain (NfL) is an axonal cytoskeletal protein released upon neuronal injury into the cerebrospinal fluid (CSF) and blood. As little is known about the course of neurofilament release in the course of PM, we measured CSF and serum NfL levels longitudinally in experimental PM (ePM). Methods Eleven-day-old infant Wistar rats were infected intracisternally with Streptococcus pneumoniae and treated with ceftriaxone. At 18 and 42 h post-infection (hpi), the blood and CSF were sampled for NfL measurements by a single molecule array technology. Inflammatory cytokines and MMP-9 in CSF were quantified by magnetic bead multiplex assay (Luminex®) and by gel zymography, respectively. Results In ePM, CSF and serum NfL levels started to increase at 18 hpi and were 26- and 3.5-fold increased, respectively, compared to mock-infected animals at 42 hpi (p < 0.0001). CSF and serum NfL correlated at 18 hpi (p < 0.05, r = 0.4716) and 42 hpi (p < 0.0001, r = 0.8179). Both CSF and serum NfL at 42 hpi strongly correlated with CSF levels of IL-1β, TNF-α, and IL-6 and of MMP-9 depending on their individual kinetics. Conclusion Current results demonstrate that during the peak inflammatory phase of ePM, NfL levels in CSF and serum are the highest among CNS disease models studied so far. Given the strong correlation of CSF versus serum NfL, and its CNS-specific signal character, longitudinal measurements to monitor the course of PM could be performed based on blood sample tests, i.e., without the need of repetitive spinal taps. We conclude that NfL in the serum should be evaluated as a biomarker in PM.


2020 ◽  
Vol 12 (3) ◽  
pp. 334-338
Author(s):  
Aysel Büsra Sisman ◽  
Muhammet Duran Bayar ◽  
Sema İçöz ◽  
Vuslat Yilmaz ◽  
Murat Kürtüncü ◽  
...  

Diagnosis of the syndrome of headache and neurological deficits with cerebrospinal fluid (CSF) lymphocytosis (HaNDL) is based on clinical features, and no diagnostic biomarkers are available. We present a case presenting with characteristic features of HaNDL and an MRI lesion in the splenium of corpus callosum. CSF neurofilament light chain (NFL) levels were assessed in this patient together with 7 additional HaNDL patients, 18 multiple sclerosis (MS) patients, and 15 primary headache patients. Both HaNDL and primary headache patients showed significantly lower NFL levels than MS patients. Our results suggest that increased CSF levels of NFL and neuroaxonal loss are not characteristic features of HaNDL. Neurological disorders mimicking HaNDL often present with increased levels of NFL, and thus CSF measurement of NFL might be useful in differential diagnosis of HaNDL.


2021 ◽  
pp. 10.1212/CPJ.0000000000001133

In the Research article “Neurofilament Light Chain Is Related to Longitudinal Decline in Frontotemporal Lobar Degeneration” by Zhang et al.1, the data in the third column of Table 4 labeled “F letter fluency” were incorrect. A corrected Table 4 is below. The authors regret the error.


Sign in / Sign up

Export Citation Format

Share Document