Nonlinear dynamic behaviors of rod fastening rotor-hydrodynamic journal bearing system

2015 ◽  
Vol 85 (7) ◽  
pp. 855-875 ◽  
Author(s):  
Di Hei ◽  
Yanjun Lu ◽  
Yongfang Zhang ◽  
Fuxi Liu ◽  
Chao Zhou ◽  
...  
2011 ◽  
Vol 121-126 ◽  
pp. 1966-1971
Author(s):  
Wu Bin Xu ◽  
De Jian Zhou ◽  
Peter Ogrodnik ◽  
Mike Goodwin

The manufacturing tolerances of a hydrodynamic journal bearing system are inevitable in manufacturing process. To examine and understand the effect of manufacturing tolerances on the system stability can help engineers to confidently choose reasonable tolerances at design stage. This study presented a theoretical analysis method to determine and compare the effects of dimensional manufacturing tolerances and journal out-of-roundness on system stability by Taguchi method. The results show that the journal out-of-roundness has the most significant effect on the system stability and the journal out-of-roundness appears to stabilize the system. The authors suggest that both dimensional manufacturing tolerances and journal roundness should be taken into account in the design of cylindrical journal bearings.


Author(s):  
Bing Li ◽  
Dejian Zhou ◽  
Peter Ogrodnik ◽  
Wubin Xu

The present study investigates the effect of cylindricity error on the performance of hydrodynamic journal bearing systems. Two types of cylindricity errors of the journal, namely the drum shape distribution cylindricity error (DCE) and the saddle shape distribution cylindricity error (SCE), are considered. The Legendre–Fourier model is used to characterize the profile of each journal. Based on the nonlinear analysis method, the dynamic characteristics and stability of hydrodynamic journal bearing systems are analyzed. The results indicate that cylindricity error affects the system stability, and the effect is related to the type and level of the error. DCE used with a certain range of operating speed and load is not harmful and is even beneficial to the stability of hydrodynamic journal bearing systems; conversely, SCE decreases the system stability. When the Sommerfeld number is between 0.02 and 0.05, cylindricity errors have a minimal effect on the system stability. Additionally, the results indicate that the effect of cylindricity error on the bearing system is more significant than that of roundness error.


2015 ◽  
Vol 764-765 ◽  
pp. 204-207
Author(s):  
Cheng Chi Wang ◽  
Jui Pin Hung

The chaos and nonlinear dynamic behaviors of porous air bearing system are studied by a hybrid numerical method combining the finite difference method (FDM) and differential transformation method (DTM). The numerical results are verified by two different schemes including hybrid method and FDM and the current analytical results are found to be in good agreement. Furthermore, the results reveal the changes which take place in the dynamic behavior of the bearing system as the rotor mass is increased. From the dynamic responses of the rotor center, they reveal complex dynamic behaviors including periodic, sub-harmonic motion and chaos. The results of this study provide an understanding of the nonlinear dynamic behavior of PAB systems characterized by different rotor masses. Specifically, the results have shown that system exists chaotic motion over the ranges of rotor mass 10.66≤Mr<13.7kg. The proposed method and results provide an effective means of gaining insights into the porous air bearing systems.


2021 ◽  
Vol 2021 ◽  
pp. 1-11
Author(s):  
Guofang Nan ◽  
Yujie Zhu ◽  
Yang Zhang ◽  
Wei Guo

Nonlinear dynamic characteristics of a rotor-bearing system with cubic nonlinearity are investigated. The comprehensive effects of the unbalanced excitation, the internal clearance, the nonlinear Hertzian contact force, the varying compliance vibration, and the nonlinear stiffness of support material are considered. The expression with the linear and the cubic nonlinear terms is adopted to characterize the synthetical nonlinearity of the rotor-bearing system. The effects of nonlinear stiffness, rotating speed, and mass eccentricity on the dynamic behaviors of the system are studied using the rotor trajectory diagrams, bifurcation diagrams, and Poincaré map. The complicated dynamic behaviors and types of routes to chaos are found, including the periodic doubling bifurcation, sudden transition, and quasiperiodic from periodic motion to chaos. The research results show that the system has complex nonlinear dynamic behaviors such as multiple period, paroxysmal bifurcation, inverse bifurcation, jumping phenomena, and chaos; the nonlinear characteristics of the system are significantly enhanced with the increase of the nonlinear stiffness, and the material with lower nonlinear stiffness is more conducive to the stable operation of the system. The research will contribute to a comprehensive understanding of the nonlinear dynamics of the rotor-bearing system.


2017 ◽  
Vol 69 (5) ◽  
pp. 754-760 ◽  
Author(s):  
Nimeshchandra S. Patel ◽  
Dipak Vakharia ◽  
Gunamani Deheri

Purpose This paper aims to investigate the performance of a ferrofluid-based hydrodynamic journal bearing system. Design/methodology/approach This paper presents a new design of ferrofluid-based hydrodynamic journal bearing. An experimental set-up consisting of a magnetic shaft along with a brass bearing was modified and developed. A permanent magnet was used to make the selected shaft material magnetic. The load and speed were varied to conduct the analyses for different test conditions. Findings The paper provides information about a design of ferrofluid-based journal bearing and its improved performances. For moderate to higher loads at different shaft speeds, it was found that because of the magnetization effect, the maximum film pressure in case of a ferrofluid lubricant increased up to approximately 60 per cent, compared with that of the conventional lubricant-based journal bearing system. Besides, the temperature rise was found smaller for ferrofluid lubricants, thus making the system cooler while running. Originality/value This paper offers a new design of magnetic bearing system for the experimental analysis by utilizing a magnetic shaft with a non-magnetic bearing. The present ferrofluid-based bearing design is less complicated from manufacturing point of view.


Author(s):  
Yi Liu ◽  
Heng Liu ◽  
Xin Wang ◽  
Minqing Jing

The nonlinear dynamic characteristics of three-dimensional rod-fastening rotor bearing system are investigated in this paper. The rod-fastening rotor includes discontinuous shaft, rotating disks, circumferentially distributed rods, and macrointerfaces between disks. The first three parts are discretized by three dimensional elements, and the macrointerfaces are connected by some springs whose stiffness is determined by a proposed linear partition method. For comparison, the three-dimensional dynamic model of a corresponding complete rotor bearing system is also built. After the rod-fastening and complete rotor bearing system are reduced by a component mode synthesis, periodic motions and stability margins are calculated by using the shooting method and path-following technique, and the local stability of system is obtained by using the Floquet theory. Comparative results show the both systems have a resemblance in the bifurcation features when mass eccentricity and rotating speed are changed. The vibration response has the identical frequency components when typical bifurcations occur. The dynamic stress is obtained by regarding the displacements of all nodes as load. Moreover, the unbalanced and insufficient of the pre-tightening forces lead to obvious disadvantageous influence on the stability and vibration of the both systems. Generally, this paper considers the interfacial effect of the rod-fastening rotor bearing system and the relative nonlinear dynamic features are obtained.


Sign in / Sign up

Export Citation Format

Share Document