Effect of journal cylindricity error with saddle or drum distribution on the performance of hydrodynamic journal bearing systems

Author(s):  
Bing Li ◽  
Dejian Zhou ◽  
Peter Ogrodnik ◽  
Wubin Xu

The present study investigates the effect of cylindricity error on the performance of hydrodynamic journal bearing systems. Two types of cylindricity errors of the journal, namely the drum shape distribution cylindricity error (DCE) and the saddle shape distribution cylindricity error (SCE), are considered. The Legendre–Fourier model is used to characterize the profile of each journal. Based on the nonlinear analysis method, the dynamic characteristics and stability of hydrodynamic journal bearing systems are analyzed. The results indicate that cylindricity error affects the system stability, and the effect is related to the type and level of the error. DCE used with a certain range of operating speed and load is not harmful and is even beneficial to the stability of hydrodynamic journal bearing systems; conversely, SCE decreases the system stability. When the Sommerfeld number is between 0.02 and 0.05, cylindricity errors have a minimal effect on the system stability. Additionally, the results indicate that the effect of cylindricity error on the bearing system is more significant than that of roundness error.

2011 ◽  
Vol 121-126 ◽  
pp. 1966-1971
Author(s):  
Wu Bin Xu ◽  
De Jian Zhou ◽  
Peter Ogrodnik ◽  
Mike Goodwin

The manufacturing tolerances of a hydrodynamic journal bearing system are inevitable in manufacturing process. To examine and understand the effect of manufacturing tolerances on the system stability can help engineers to confidently choose reasonable tolerances at design stage. This study presented a theoretical analysis method to determine and compare the effects of dimensional manufacturing tolerances and journal out-of-roundness on system stability by Taguchi method. The results show that the journal out-of-roundness has the most significant effect on the system stability and the journal out-of-roundness appears to stabilize the system. The authors suggest that both dimensional manufacturing tolerances and journal roundness should be taken into account in the design of cylindrical journal bearings.


2011 ◽  
Vol 133 (6) ◽  
Author(s):  
Zenglin Guo ◽  
Gordon Kirk

The mechanism of the Morton Effect induced synchronous instability has been discussed in Part 1, using an assumption of isotropic linear bearings. The second part of the current study will now focus on the more realistic systems, mid-span rotors supported by the hydrodynamic journal bearings. First, the models to calculate the thermal bending of the shaft and the temperature distribution across the journal surface are established. This can be used to calculate the equivalent thermal imbalance. The calculations of the temperature difference and its equivalent thermal imbalance using hydrodynamic plain journal bearing models are conducted and discussed with the comparison to the analytical results obtained in Part 1. It shows that the thermal imbalance induced by the Morton Effect may increase to the level of the mechanical imbalance and then its influence on the system stability should be included. The suggested thermal bending model also partially explains that the mid-span rotors are less liable to be influenced by the Morton Effect induced instability than are the overhung configurations, because of the restraining effect between two supports. Finally, a symmetric mid-span rotor - hydrodynamic journal bearing system is calculated to show its stability performance. The results show the inclusion of the Morton Effect may lead to an unstable operation of the system. Considering the existence of the oil film self-induced vibration due to the dynamic characteristics of fluid film bearings, the Morton Effect may make a further negative impact on the stability of the system. The simulation results of the unbalance response show that the Morton Effect changes the shapes of the whirling orbits and makes them no longer the standard elliptical orbits around the static equilibriums.


Author(s):  
B-H Rho ◽  
K-W Kim

Results of theoretical investigations on stability characteristics of an actively controlled hydrodynamic journal bearing are presented. Proportional, derivative and integral controls are adopted for a hydrodynamic journal bearing with an axial groove. Furthermore, a cavitation algorithm, implementing the Jakobsson-Floberg-Olsson boundary condition, is adopted to predict cavitation regions in a fluid film more accurately than the conventional analysis, which uses the Reynolds condition. Using the bearing's linear dynamic coefficients, which are evaluated from the perturbation method, the stability characteristics of a rotor-bearing system are investigated using the Routh-Hurwitz criteria. It is shown that the instability threshold speed of a rotor-bearing system can be greatly increased and the unbalanced responses of the system can be markedly decreased by both proportional and derivative control of the bearing. Results show that active control of a hydrodynamic journal bearing can be adopted for stability improvement and reduction of the unbalanced whirl amplitude of a rotor-bearing system.


Author(s):  
Yuan Wei ◽  
Zhaobo Chen ◽  
Wubin Xu ◽  
Yinghou Jiao

According to the exist of dimensional tolerances on hydrodynamic journal bearing system, a nonlinear oil film force model was developed, emphasis on the different dimensional tolerances in the system, the tolerances of dynamic viscosity, bearing width, bearing diameter and journal diameter along with its interaction effect to the dynamics characteristics of the hydrodynamic journal bearing system were analyzed. By using the eccentricity corresponding to the stability threshold velocity, the effects of the stiffness and damping coefficients, carrying capacity, system stability and friction power loss brought by the dimensional tolerances of the dynamic viscosity, bearing width, bearing diameter and journal diameter was quantitative analyzed. The results show that in contrast to the impacts of the tolerances in bearing diameter, dynamic viscosity and bearing width, the journal diameter tolerance would lead to a negative effect, and the dimensional tolerances have different degrees of impacts on the journal bearing system. The energy decreased as the eccentricity increased, when the eccentricity is 0.6948 the friction energy reach to a minimum. It provides a theoretical basis to select reasonable parameter, find the best solution and control varieties of nonlinear dynamical behavior.


Author(s):  
Zenglin Guo ◽  
Gordon Kirk

The mechanism of the Morton Effect induced synchronous instability has been discussed in Part 1, using an assumption of isotropic linear bearings. The second part of the current study will now focus on the more realistic systems, mid-span rotors supported by the hydrodynamic journal bearings. First, the models to calculate the thermal bending of the shaft and the temperature distribution across the journal surface are established. This can be used to calculate the equivalent thermal imbalance. The calculations of the temperature difference and its equivalent thermal imbalance using hydrodynamic plain journal bearing models are conducted and discussed with the comparison to the analytical results obtained in Part 1. It shows that the thermal imbalance induced by the Morton Effect may increase to the level of the mechanical imbalance and then its influence on the system stability should be included. The suggested thermal bending model also partially explain that the mid-span rotors are less liable to be influenced by the Morton Effect induced instability than are the overhung configurations, because of the restraining effect between two supports. Finally, a symmetric mid-span rotor–hydrodynamic journal bearing system is calculated to show its stability performance. The results show the inclusion of the Morton Effect may lead to an unstable operation of the system. Considering the existence of the oil film self-induced vibration due to the dynamic characteristics of fluid film bearings, the Morton Effect may make a further negative impact on the stability of the system. The simulation results of the unbalance response show that the Morton Effect changes the shapes of the whirling orbits and makes them no longer be the standard elliptical orbits around the static equilibriums.


2019 ◽  
Vol 71 (1) ◽  
pp. 31-39
Author(s):  
Subrata Das ◽  
Sisir Kumar Guha

Purpose The purpose of this paper is to investigate the effect of turbulence on the stability characteristics of finite hydrodynamic journal bearing lubricated with micropolar fluid. Design/methodology/approach The non-dimensional transient Reynolds equation has been solved to obtain the non-dimensional pressure field which in turn used to obtain the load carrying capacity of the bearing. The second-order equations of motion applicable for journal bearing system have been solved using fourth-order Runge–Kutta method to obtain the stability characteristics. Findings It has been observed that turbulence has adverse effect on stability and the whirl ratio at laminar flow condition has the lowest value. Practical implications The paper provides the stability characteristics of the finite journal bearing lubricated with micropolar fluid operating in turbulent regime which is very common in practical applications. Originality/value Non-linear stability analysis of micropolar fluid lubricated journal bearing operating in turbulent regime has not been reported in literatures so far. This paper is an effort to address the problem of non-linear stability of journal bearings under micropolar lubrication with turbulent effect. The results obtained provide useful information for designing the journal bearing system for high speed applications.


2003 ◽  
Vol 125 (2) ◽  
pp. 291-300 ◽  
Author(s):  
G. H. Jang ◽  
J. W. Yoon

This paper presents an analytical method to investigate the stability of a hydrodynamic journal bearing with rotating herringbone grooves. The dynamic coefficients of the hydrodynamic journal bearing are calculated using the FEM and the perturbation method. The linear equations of motion can be represented as a parametrically excited system because the dynamic coefficients have time-varying components due to the rotating grooves, even in the steady state. Their solution can be assumed as a Fourier series expansion so that the equations of motion can be rewritten as simultaneous algebraic equations with respect to the Fourier coefficients. Then, stability can be determined by solving Hill’s infinite determinant of these algebraic equations. The validity of this research is proved by the comparison of the stability chart with the time response of the whirl radius obtained from the equations of motion. This research shows that the instability of the hydrodynamic journal bearing with rotating herringbone grooves increases with increasing eccentricity and with decreasing groove number, which play the major roles in increasing the average and variation of stiffness coefficients, respectively. It also shows that a high rotational speed is another source of instability by increasing the stiffness coefficients without changing the damping coefficients.


Author(s):  
K. Al-Durgham ◽  
D. D. Lichti ◽  
I. Detchev ◽  
G. Kuntze ◽  
J. L. Ronsky

A fundamental task in photogrammetry is the temporal stability analysis of a camera/imaging-system’s calibration parameters. This is essential to validate the repeatability of the parameters’ estimation, to detect any behavioural changes in the camera/imaging system and to ensure precise photogrammetric products. Many stability analysis methods exist in the photogrammetric literature; each one has different methodological bases, and advantages and disadvantages. This paper presents a simple and rigorous stability analysis method that can be straightforwardly implemented for a single camera or an imaging system with multiple cameras. The basic collinearity model is used to capture differences between two calibration datasets, and to establish the stability analysis methodology. Geometric simulation is used as a tool to derive image and object space scenarios. Experiments were performed on real calibration datasets from a dual fluoroscopy (DF; X-ray-based) imaging system. The calibration data consisted of hundreds of images and thousands of image observations from six temporal points over a two-day period for a precise evaluation of the DF system stability. The stability of the DF system – for a single camera analysis – was found to be within a range of 0.01 to 0.66 mm in terms of 3D coordinates root-mean-square-error (RMSE), and 0.07 to 0.19 mm for dual cameras analysis. It is to the authors’ best knowledge that this work is the first to address the topic of DF stability analysis.


Sign in / Sign up

Export Citation Format

Share Document