The effect of mental stress on heart rate variability and blood pressure during computer work

2004 ◽  
Vol 92 (1-2) ◽  
pp. 84-89 ◽  
Author(s):  
Nis Hjortskov ◽  
Dag Riss�n ◽  
Anne Katrine Blangsted ◽  
Nils Fallentin ◽  
Ulf Lundberg ◽  
...  
2020 ◽  
Vol 4 (Supplement_2) ◽  
pp. 20-20
Author(s):  
Vita Dikariyanto ◽  
Leanne Smith ◽  
May Robertson ◽  
Eslem Kusaslan ◽  
Molly O'Callaghan-Latham ◽  
...  

Abstract Objectives Stress is inversely associated with heart rate variability (HRV), an indicator of cardiac autonomic function and a predictor of risk of sudden cardiac death. At times of stress, people tend to favor high sugar and fatty foods, often as snacks, with potential adverse effects on cardiometabolic health. Dietary recommendations for cardiovascular disease (CVD) prevention emphasize fruits, vegetables, wholegrains and nuts. There is evidence that consumption of nuts can reduce LDL cholesterol and blood pressure and help with weight management, however the impact of nuts on HRV in response to stress is unknown. The ATTIS dietary intervention study investigated the HRV response to acute stress following 6-week substitution of almonds for typical snacks high in refined starch, free sugars and saturated fats, and low in fibre. The study population comprised adults aged 30–70 y, who were habitual snack consumers, and at moderate risk of developing CVD. It was hypothesized that snacking on almonds would increase HRV during stress tasks, when HRV is expected to be reduced due to increased sympathetic activity. Methods A 6-week randomized controlled parallel trial was conducted. Participants were randomized to 1) control snacks (mini-muffins formulated to follow the average UK snack nutrient profile), or 2) dry-roasted whole almonds, both providing 20% estimated energy requirement. Supine HRV was measured (Mega Electronics Emotion Faros 180°, 2-leads wearable ECG-HRV monitor) during resting (5 min), physical stress (blood pressure monitor cuff inflation 200 mmHg, 5 min) and mental stress (Stroop colour-word test, 5 min) tasks pre- and post-intervention. A total of 105 participants (73 females and 32 males; mean age 56.2 y, SD 10.4) completed the trial. Results Almonds significantly increased the beat-to-beat HRV parameter, high-frequency power, during the mental stress test (mean difference 124 ms2; 95% CI 11, 237; P = 0.031) relative to control, indicating increased parasympathetic regulation. There were no treatment effects during resting and the physical stress task. Conclusions Snacking on whole almonds as a replacement for typical snacks increases HRV during mental stress, indicating an increased resilience in cardiac autonomic function and a novel mechanism whereby nuts may be cardioprotective. Funding Sources Almond Board of California.


2021 ◽  
Vol 4 (1) ◽  
Author(s):  
Elisa Mejía-Mejía ◽  
James M. May ◽  
Mohamed Elgendi ◽  
Panayiotis A. Kyriacou

AbstractHeart rate variability (HRV) utilizes the electrocardiogram (ECG) and has been widely studied as a non-invasive indicator of cardiac autonomic activity. Pulse rate variability (PRV) utilizes photoplethysmography (PPG) and recently has been used as a surrogate for HRV. Several studies have found that PRV is not entirely valid as an estimation of HRV and that several physiological factors, including the pulse transit time (PTT) and blood pressure (BP) changes, may affect PRV differently than HRV. This study aimed to assess the relationship between PRV and HRV under different BP states: hypotension, normotension, and hypertension. Using the MIMIC III database, 5 min segments of PPG and ECG signals were used to extract PRV and HRV, respectively. Several time-domain, frequency-domain, and nonlinear indices were obtained from these signals. Bland–Altman analysis, correlation analysis, and Friedman rank sum tests were used to compare HRV and PRV in each state, and PRV and HRV indices were compared among BP states using Kruskal–Wallis tests. The findings indicated that there were differences between PRV and HRV, especially in short-term and nonlinear indices, and although PRV and HRV were altered in a similar manner when there was a change in BP, PRV seemed to be more sensitive to these changes.


2021 ◽  
pp. 1-7
Author(s):  
LaBarron K. Hill ◽  
Julian F. Thayer ◽  
DeWayne P. Williams ◽  
James D. Halbert ◽  
Guang Hao ◽  
...  

2014 ◽  
Vol 35 (7) ◽  
pp. 1319-1334 ◽  
Author(s):  
Z Visnovcova ◽  
M Mestanik ◽  
M Javorka ◽  
D Mokra ◽  
M Gala ◽  
...  

2014 ◽  
Vol 37 (8) ◽  
pp. 779-784 ◽  
Author(s):  
Hiromi Mori ◽  
Isao Saito ◽  
Eri Eguchi ◽  
Koutatsu Maruyama ◽  
Tadahiro Kato ◽  
...  

1991 ◽  
Vol 81 (1) ◽  
pp. 17-22 ◽  
Author(s):  
Karin Manhem ◽  
Christina Jern ◽  
Martin Pilhall ◽  
Guy Shanks ◽  
Sverker Jern

1. The haemodynamic effects of hormonal changes during the menstrual cycle were examined in 11 normotensive women (age 20–46 years). The subjects were studied on days 2–8 (follicular phase) and days 18–26 (luteal phase) in a randomized order. A standardized mental stress test and a 24 h recording of ambulatory blood pressure and heart rate were performed. 2. Pre-stress resting levels of heart rate and blood pressure were similar during the two phases of the menstrual cycle. 3. During mental stress, the heart rate response was significantly greater during the luteal phase than during the follicular phase (14.7 versus 9.7 beats/min; P < 0.05). 4. Blood pressure, plasma catecholamine concentrations and subjective stress experience increased significantly in response to stress, without any significant differences between the two phases. 5. During 24 h ambulatory monitoring, higher levels of systolic blood pressure and heart rate were observed in the luteal phase than in the follicular phase (P < 0.005 and P < 0.0001, respectively). 6. These data indicate that cyclic variations in female sex hormones not only affect systolic blood pressure and heart rate, but also alter the haemodynamic responses to psychosocial stress.


Sign in / Sign up

Export Citation Format

Share Document