A stress-inducible plasma membrane protein�3 (AcPMP3) in a monocotyledonous halophyte, Aneurolepidium chinense, regulates cellular Na+ and K+ accumulation under salt stress

Planta ◽  
2004 ◽  
Vol 220 (3) ◽  
pp. 395-402 ◽  
Author(s):  
Mayumi Inada ◽  
Akihiro Ueda ◽  
Weiming Shi ◽  
Tetsuko Takabe
Author(s):  
Jianmei Fu ◽  
Yu Shi ◽  
Laipan Liu ◽  
Biao Liu

The cellular localization of exogenous proteins expressed in transgenic crops not only determines their stability, but also their effects on crop growth and development, including under stressful conditions; however, the underlying molecular mechanisms remain unknown. Here, we determined the cellular distribution of exogenously expressed Cry1Ab/c protein in insect-resistant transgenic rice Huahui-1 (HH1) cells through subcellular localization, immunohistochemistry, immunofluorescence, and western blot analyses. Interaction between the Cry1Ab/c protein and the preliminarily screened endogenous plasma membrane protein Ca2+-ATPase was investigated through yeast two-hybrid, bimolecular fluorescence complementation (BIFC), and co-immunoprecipitation analyses. The potential interaction mechanism was analyzed by comparing the cellular localization and interaction sites between Cry1Ab/c and Ca2+-ATPase. Phenotypic indices and Ca2+-ATPase activity, which may be regulated by the Cry1Ab/c–Ca2+-ATPase interaction, were determined in transgenic HH1 and the parental line Minghui-63 under stress-free and salt-stress conditions. The results showed that Cry1Ab/c was not only distributed in the cytoplasm and nucleus but was also distributed on the plasma membrane, where it interacted with plasma membrane Ca2+-ATPase. This interaction partially retain plasma membrane protein Ca2+-ATPase in the nucleus by a BIFC experiment and thus may affect Ca2+-ATPase activity on the membrane by altering the cellular location of the protein. Consistently, our results confirmed that the presence of Cry1Ab/c in the transgenic HH1 resulted in a reduction in Ca2+-ATPase activity as well as causing detrimental effects on plant phenotype, including significantly reduced plant height and biomass, compared to parental MH63; and that these detrimental effects were more pronounced under salt stress conditions, impacting the salt resistance of the transgenic plants. We suggest that the Cry1Ab/c–Ca2+-ATPase interaction may explain the plasma membrane localization of Cry1Ab/c, which lacks a signal peptide and a transmembrane domain, and the adverse effects of Cry1Ab/c expression on the growth and development of transgenic HH1 plants under salt stress. This information may clarify the molecular mechanisms of these unintended effects and demonstrate the feasibility of evaluating the success and performance of genetic modification of commercially vital crops.


1996 ◽  
Vol 109 (6) ◽  
pp. 1215-1227 ◽  
Author(s):  
I. Hemery ◽  
A.M. Durand-Schneider ◽  
G. Feldmann ◽  
J.P. Vaerman ◽  
M. Maurice

In hepatocytes, newly synthesized apical plasma membrane proteins are first delivered to the basolateral surface and are supposed to reach the apical surface by transcytosis. The transcytotic pathway of apical membrane proteins and its relationship with other endosomal pathways has not been demonstrated morphologically. We compared the intracellular route of an apical plasma membrane protein, B10, with that of polymeric IgA (pIgA), which is transcytosed, transferrin (Tf) which is recycled, and asialoorosomucoid (ASOR) which is delivered to lysosomes. Ligands and anti-B10 monoclonal IgG were linked to fluorochromes or with peroxidase. The fate of each ligand was followed by confocal and electron microscopy in polarized primary monolayers of rat hepatocytes. When fluorescent anti-B10 IgG and fluorescent pIgA were simultaneously endocytosed for 15–30 minutes, they both uniformly labelled a juxtanuclear compartment. By 30–60 minutes, they reached the bile canaliculi. Tf and ASOR were also routed to the juxtanuclear area, but their fluorescence patterns were more punctate. Microtubule disruption prevented all ligands from reaching the juxtanuclear area. This area corresponded, at least partially, to the localization of the mannose 6-phosphate receptor, an endosomal marker. By electron microscopy, the juxtanuclear compartment was made up of anastomosing tubules connected to vacuoles, and was organized around the centrioles. B10 and pIgA were mainly found in the tubules, whereas ASOR was segregated inside the vacuolar elements and Tf within thinner, recycling tubules. In conclusion, transcytosis of the apical membrane protein B10 occurs inside tubules similar to those carrying pIgA, and involves passage via the pericentriolar area. In the pericentriolar area, the transcytotic tubules appear to maintain connections with other endosomal elements where sorting between recycled and degraded ligands occurs.


1987 ◽  
Vol 241 (3) ◽  
pp. 801-807 ◽  
Author(s):  
R T Earl ◽  
E E Billett ◽  
I M Hunneyball ◽  
R J Mayer

Reconstituted Sendai-viral envelopes (RSVE) were produced by the method of Vainstein, Hershkovitz, Israel & Loyter [(1984) Biochim. Biophys. Acta 773, 181-188]. RSVE are fusogenic unilamellar vesicles containing two transmembrane glycoproteins: the HN (haemagglutinin-neuraminidase) protein and the F (fusion) factor. The fate of the viral proteins after fusion-mediated transplantation of RSVE into hepatoma (HTC) cell plasma membranes was studied to probe plasma-membrane protein degradation. Both protein species are degraded at similar, relatively slow, rates (t1/2 = 67 h) in HTC cells fused with RSVE in suspension. Even slower degradation rates for HN and F proteins (t1/2 = 93 h) were measured when RSVE were fused with HTC cells in monolayer. Lysosomal degradation of the transplanted viral proteins is strongly implicated by the finding that degradation of HN and F proteins is sensitive to inhibition by 10 mM-NH4Cl (81%) and by 50 micrograms of leupeptin/ml (70%).


Sign in / Sign up

Export Citation Format

Share Document