Development of Cucumber mosaic virus as a vector modifiable for different host species to produce therapeutic proteins

Planta ◽  
2006 ◽  
Vol 225 (2) ◽  
pp. 277-286 ◽  
Author(s):  
Kouki Matsuo ◽  
Jin- Sung Hong ◽  
Noriko Tabayashi ◽  
Akira Ito ◽  
Chikara Masuta ◽  
...  
2007 ◽  
Vol 88 (9) ◽  
pp. 2596-2604 ◽  
Author(s):  
Zhi-You Du ◽  
Fei-Fei Chen ◽  
Qian-Sheng Liao ◽  
Hua-Rong Zhang ◽  
Yan-Fei Chen ◽  
...  

Cucumber mosaic virus (CMV)-encoded 2b protein from subgroup IA or subgroup II was shown to be a determinant of virulence in many solanaceous hosts. In this study, the virulence of 2b proteins from subgroup IB strains was analysed using four intraspecies hybrid viruses, which were generated by precise replacement of the 2b open reading frame (ORF) in subgroup IA strain Fny-CMV with the 2b ORFs of four subgroup IB strains, Cb7-CMV, PGs-CMV, Rad35-CMV and Na-CMV, generating FCb72b-CMV, FPGs2b-CMV, FRad352b-CMV and FNa2b-CMV, respectively. FCb72b-CMV was more virulent than Fny-CMV, and was similar in phenotype to its parental virus Cb7-CMV on the three Nicotiana species tested. FNa2b-CMV also was virulent on these host species, equivalent to Fny-CMV or Na-CMV. However, FRad352b-CMV only caused mild mosaic or undetectable symptoms on all the host species tested, and was less virulent than Fny-CMV or Rad35-CMV. FPGs2b-CMV infected all the host species systemically, and induced either mosaic or barely visible symptoms, demonstrating that the inability of PGs-CMV to infect these three Nicotiana species was not due to its 2b protein. The diverse virulence was shown to be mediated by the 2b proteins rather than the C-terminal overlapping parts of the 2a proteins, and was associated with the level of viral progeny RNA accumulation in systemically infected leaves, but not with the rate of long-distance viral movement in host plants. Through analysis of encapsidation of viral RNAs, there was an apparent correlation between the virulence and the high level of encapsidated RNA 2 in virions of Fny-CMV, FCb72b-CMV and FNa2b-CMV.


1994 ◽  
Vol 45 (5) ◽  
pp. 1035 ◽  
Author(s):  
SJ McKirdy ◽  
RAC Jones

Under conditions of natural cucumber mosaic virus (CMV) spread, eight alternate host species found associated with Lupinus angustifolius (narrow-leafed lupin) and/or Trifolium subterraneum (subterranean clover) were infected commonly and another nine sporadically. Five of these were new records. Because seed of herbaceous plant hosts provides a possible route for virus persistence through dry summer conditions, CMV seed transmission was tested for in alternative hosts. Seed of seven species systemically infected following sap inoculation was tested, but CMV seed transmission was only detected in M. polymorpha (0.7%) and M. indica (0.1%). When seed of 14 potential alternative host species that became systemically infected through natural virus spread was tested, CMV seed transmission was found only in C. decumbens (0.5%). No CMV was detected in Citrullus lanatus growing as a deep-rooted, herbaceous summer weed following CMV-infected L. angustifolius crops, or in the perennial Acacia saligna growing adjacent to a previously CMV-infected L. angustifolius field. CMV persisted through seed transmission over summer for up to 5 years in grazed, self-regenerated T. subterraneum swards. It is concluded that under the conditions of broadacre agriculture, in the Mediterranean-type climate of Western Australia, weed hosts are unlikely to be an important means by which CMV persists over summer, but seed transmission in naturalized M. polymorpha and C. decumbens may occassionally play a minor role. Moreover, despite being seed-borne in T. subterraneum, CMV did not persist readily enough from year to year in grazed swards for T. subterraneum pastures to play more than a minor role as a CMV source for infection of L. angustifolius .


2005 ◽  
Vol 18 (5) ◽  
pp. 428-434 ◽  
Author(s):  
Carl N. Mayers ◽  
Kian-Chung Lee ◽  
Catherine A. Moore ◽  
Sek-Man Wong ◽  
John P. Carr

Salicylic acid (SA)-induced resistance to Cucumber mosaic virus (CMV) in tobacco (Nicotiana tabacum) results from inhibition of systemic virus movement and is induced via a signal transduction pathway that also can be triggered by antimycin A, an inducer of the mitochondrial enzyme alternative oxidase (AOX). In Arabidopsis thaliana, inhibition of CMV systemic movement also is induced by SA and antimycin A. These results indicate that the mechanisms underlying induced resistance to CMV in tobacco and A. thaliana are very similar. In contrast to the situation in tobacco and A. thaliana, in squash (Cucurbita pepo), SA-induced resistance to CMV results from inhibited virus accumulation in directly inoculated tissue, most likely through inhibition of cell-to-cell movement. Furthermore, neither of the AOX inducers antimycin A or KCN induced resistance to CMV in squash. Additionally, AOX inhibitors that compromise SAinduced resistance to CMV in tobacco did not inhibit SAinduced resistance to the virus in squash. The results show that different host species may use significantly different approaches to resist infection by the same virus. These findings also imply that caution is required when attempting to apply findings on plant-virus interactions from model systems to a wider range of host species.


2002 ◽  
Vol 76 (21) ◽  
pp. 10654-10664 ◽  
Author(s):  
Fabrizio Cillo ◽  
Ian M. Roberts ◽  
Peter Palukaitis

ABSTRACT The replication-associated proteins encoded by Cucumber mosaic virus (CMV), the 1a and 2a proteins, were detected by immunogold labeling in two host species of this virus, tobacco (Nicotiana tabacum) and cucumber (Cucumis sativus). In both hosts, the 1a and 2a proteins colocalized predominantly to the vacuolar membranes, the tonoplast. While plus-strand CMV RNAs were found distributed throughout the cytoplasm by in situ hybridization, minus-strand CMV RNAs were barely detectable but were found associated with the tonoplast. In both cucumber and tobacco, 2a protein was detected at higher densities than 1a protein. The 1a and 2a proteins also showed quantitative differences with regard to tissue distributions in tobacco and cucumber. About three times as much 2a protein was detected in CMV-infected cucumber tissues as in CMV-infected tobacco tissues. In tobacco, high densities of these proteins were observed only in vascular bundle cells of minor veins. In contrast, in cucumber, high densities of 1a and 2a proteins were observed in mesophyll cells, followed by epidermis cells, with only low levels being observed in vascular bundle cells. Differences were also observed in the distributions of 2a protein and capsid protein in vascular bundle cells of the two host species. These observations may represent differences in the relative rates of tissue infection in different hosts or differences in the extent of virus replication in vascular tissues of different hosts.


1997 ◽  
Vol 65 (4) ◽  
pp. 769-776 ◽  
Author(s):  
Shinji Monma ◽  
Yoshiteru Sakata

1996 ◽  
Vol 62 (1) ◽  
pp. 40-44 ◽  
Author(s):  
Piyasak CHAUMPLUK ◽  
Yukiko SASAKI ◽  
Naoko NAKAJIMA ◽  
Hideaki NAGANO ◽  
Ikuo NAKAMURA ◽  
...  

2019 ◽  
Vol 9 (1) ◽  
Author(s):  
Yuh Tzean ◽  
Ming-Chi Lee ◽  
Hsiao-Hsuan Jan ◽  
Yi-Shu Chiu ◽  
Tsui-Chin Tu ◽  
...  

Plants ◽  
2021 ◽  
Vol 10 (5) ◽  
pp. 963
Author(s):  
Maria C. Holeva ◽  
Athanasios Sklavounos ◽  
Rajendran Rajeswaran ◽  
Mikhail M. Pooggin ◽  
Andreas E. Voloudakis

Cucumber mosaic virus (CMV) is a destructive plant virus with worldwide distribution and the broadest host range of any known plant virus, as well as a model plant virus for understanding plant–virus interactions. Since the discovery of RNA interference (RNAi) as a major antiviral defense, RNAi-based technologies have been developed for plant protection against viral diseases. In plants and animals, a key trigger of RNAi is double-stranded RNA (dsRNA) processed by Dicer and Dicer-like (DCL) family proteins in small interfering RNAs (siRNAs). In the present study, dsRNAs for coat protein (CP) and 2b genes of CMV were produced in vitro and in vivo and applied onto tobacco plants representing a systemic solanaceous host as well as on a local host plant Chenopodium quinoa. Both dsRNA treatments protected plants from local and systemic infection with CMV, but not against infection with unrelated viruses, confirming sequence specificity of antiviral RNAi. Antiviral RNAi was effective when dsRNAs were applied simultaneously with or four days prior to CMV inoculation, but not four days post inoculation. In vivo-produced dsRNAs were more effective than the in vitro-produced; in treatments with in vivo dsRNAs, dsRNA-CP was more effective than dsRNA-2b, while the effects were opposite with in vitro dsRNAs. Illumina sequencing of small RNAs from in vivo dsRNA-CP treated and non-treated tobacco plants revealed that interference with CMV infection in systemic leaves coincides with strongly reduced accumulation of virus-derived 21- and 22-nucleotide (nt) siRNAs, likely generated by tobacco DCL4 and DCL2, respectively. While the 21-nt class of viral siRNAs was predominant in non-treated plants, 21-nt and 22-nt classes accumulated at almost equal (but low) levels in dsRNA treated plants, suggesting that dsRNA treatment may boost DCL2 activity. Taken together, our findings confirm the efficacy of topical application of dsRNA for plant protection against viruses and shed more light on the mechanism of antiviral RNAi.


Sign in / Sign up

Export Citation Format

Share Document