Light exaggerates apical hook curvature through phytochrome actions in tomato seedlings

Planta ◽  
2009 ◽  
Vol 231 (3) ◽  
pp. 665-675 ◽  
Author(s):  
Chizuko Shichijo ◽  
Hisako Ohuchi ◽  
Naoko Iwata ◽  
Yukari Nagatoshi ◽  
Miki Takahashi ◽  
...  
2012 ◽  
Vol 5 (6) ◽  
pp. 1295-1309 ◽  
Author(s):  
Sofia D. Carvalho ◽  
Rita Saraiva ◽  
Teresa M. Maia ◽  
Isabel A. Abreu ◽  
Paula Duque

Author(s):  
Yalikunjiang Aizezi ◽  
Huazhang Shu ◽  
Linlin Zhang ◽  
Hongming Zhao ◽  
Yang Peng ◽  
...  

Abstract The apical hook is indispensable for protecting the delicate shoot apical meristem while dicot seedlings emerge from soil after germination in darkness. The development of the apical hook is co-ordinately regulated by multiple phytohormones and environmental factors. Yet, a holistic understanding of the spatial–temporal interactions between different phytohormones and environmental factors remains to be achieved. Using a chemical genetic approach, we identified kinetin riboside, as a proxy of kinetin, which promotes apical hook development of Arabidopsis thaliana in a partially ethylene-signaling-independent pathway. Further genetic and biochemical analysis revealed that cytokinin is able to regulate apical hook development via post-transcriptional regulation of the PHYTOCHROME INTERACTING FACTORs (PIFs), together with its canonical roles in inducing ethylene biosynthesis. Dynamic observations of apical hook development processes showed that ETHYLENE INSENSITVE3 (EIN3) and EIN3-LIKE1 (EIL1) are necessary for the exaggeration of hook curvature in response to cytokinin, while PIFs are crucial for the cytokinin-induced maintenance of hook curvature in darkness. Furthermore, these two families of transcription factors display divergent roles in light-triggered hook opening. Our findings reveal that cytokinin integrates ethylene signaling and light signaling via EIN3/EIL1 and PIFs, respectively, to dynamically regulate apical hook development during early seedling development.


Biologia ◽  
2011 ◽  
Vol 66 (5) ◽  
Author(s):  
Martin Šandera ◽  
Petra Andrlíková ◽  
Michaela Frolíková ◽  
Pavel Stopka

AbstractSperm apical hooks in murine rodents play an important role in sperm competition. Apical hooks are more curved and longer in species with relatively larger testes, that is in species with a higher risk of sperm competition. The sperm can form aggregations, ‘trains’, that can move faster than individual sperm, thus reaching the egg earlier as was observed in Apodemus sylvaticus. The apical hook plays an important role for train formation. This study focuses on the changes in the curvature of sperm apical hooks during the final stages of spermiogenesis and stages before fertilization (sperm-life span). Apical hook curvatures of field mice (A. agrarius and A. sylvaticus) vary significantly between dormant and active sperm. In contrast, there are no significant differences among the stages in the eastern house mouse. Since there are high ranges of angle values in all stages, the mean angles of apical hook curvature are not appropriate for evaluating risk of sperm competiton. The ranges of angle values point to a level of flexibility of the apical hooks. The lengths of sperm hooks in individual species do not change during particular stages. The length and flexibility of the sperm apical hooks are important for the formation of sperm aggregations, thus these sperm characters indicate the risk of sperm competition and the sperm strategies in murine rodents.


2021 ◽  
Author(s):  
Jia Deng ◽  
Xiangfeng Wang ◽  
Ziqiang Liu ◽  
Tonglin Mao

AbstractThe unique apical hook in dicotyledonous plants protects the shoot apical meristem and cotyledons when seedlings emerge through the soil. Its formation involves differential cell growth under the coordinated control of plant hormones, especially ethylene and auxin. Microtubules are essential players in plant cell growth that are regulated by multiple microtubule-associated proteins (MAPs). However, the role and underlying mechanisms of MAP-microtubule modules in differential cell growth are poorly understood. In this study, we found that the previously uncharacterized Arabidopsis MAP WAVE-DAMPENED2-LIKE4 (WDL4) protein plays a positive role in apical hook opening. WDL4 exhibits a temporal expression pattern during hook development in dark-grown seedlings that is directly regulated by ethylene signaling. WDL4 mutants showed a delayed hook opening phenotype while overexpression of WDL4 resulted in enhanced hook opening. In particular, wdl4-1 mutants exhibited stronger auxin accumulation in the concave side of the apical hook. Furthermore, the regulation of the auxin maxima and trafficking of the auxin efflux carriers PIN-FORMED1 (PIN1) and PIN7 in the hook region is critical for WDL4-mediated hook opening. Together, our study demonstrates that WDL4 positively regulates apical hook opening by modulating auxin distribution, thus unraveling a mechanism for MAP-mediated differential plant cell growth.


2021 ◽  
Vol 27 (3) ◽  
pp. 535-541
Author(s):  
Avinash Chandra Rai ◽  
Ashutosh Rai ◽  
Kavita Shah ◽  
Major Singh
Keyword(s):  

2021 ◽  
Vol 281 ◽  
pp. 109911
Author(s):  
Kai Li ◽  
Lili Zhang ◽  
Changyong Shao ◽  
Chongshan Zhong ◽  
Bili Cao ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document