Mental rotation, memory scanning, and the central bottleneck

1999 ◽  
Vol 62 (1) ◽  
pp. 48-61 ◽  
Author(s):  
Martin Heil ◽  
Karina Wahl ◽  
Michael Herbst
2006 ◽  
Vol 20 (3) ◽  
pp. 504-510 ◽  
Author(s):  
J. Conrad ◽  
A. H. Shah ◽  
C. M. Divino ◽  
S. Schluender ◽  
B. Gurland ◽  
...  

1995 ◽  
Vol 33 (11) ◽  
pp. 1531-1547 ◽  
Author(s):  
Apostolos P. Georgopoulos ◽  
Giuseppe Pellizzer

1997 ◽  
Vol 85 (2) ◽  
pp. 499-513
Author(s):  
Jenn-Yeu Chen

Typically, mental chronometry is performed by means of introducing an independent variable postulated to affect selectively some stage of a presumed multistage process. However, the effect could be a global one that spreads proportionally over all stages of the process. Currently, there is no method to test this possibility although simple linear regression might serve the purpose. In the present study, the regression approach was tested with tasks (memory scanning and mental rotation) that involved a selective effect and with a task (word superiority effect) that involved a global effect, by the dominant theories. The results indicate (1) the manipulation of the size of a memory set or of angular disparity affects the intercept of the regression function that relates the times for memory scanning with different set sizes or for mental rotation with different angular disparities and (2) the manipulation of context affects the slope of the regression function that relates the times for detecting a target character under word and nonword conditions. These ratify the regression approach as a useful method for doing mental chronometry.


2012 ◽  
Vol 33 (2) ◽  
pp. 83-88 ◽  
Author(s):  
David Moreau ◽  
Jérome Clerc ◽  
Annie Mansy-Dannay ◽  
Alain Guerrien

This experiment investigated the relationship between mental rotation and sport training. Undergraduate university students (n = 62) completed the Mental Rotation Test ( Vandenberg & Kuse, 1978 ), before and after a 10-month training in two different sports, which either involved extensive mental rotation ability (wrestling group) or did not (running group). Both groups showed comparable results in the pretest, but the wrestling group outperformed the running group in the posttest. As expected from previous studies, males outperformed women in the pretest and the posttest. Besides, self-reported data gathered after both sessions indicated an increase in adaptive strategies following training in wrestling, but not subsequent to training in running. These findings demonstrate the significant effect of training in particular sports on mental rotation performance, thus showing consistency with the notion of cognitive plasticity induced from motor training involving manipulation of spatial representations. They are discussed within an embodied cognition framework.


2010 ◽  
Vol 31 (2) ◽  
pp. 95-100 ◽  
Author(s):  
Claudia Quaiser-Pohl ◽  
Anna M. Rohe ◽  
Tobias Amberger

The solution strategies of preschool children solving mental-rotation tasks were analyzed in two studies. In the first study n = 111 preschool children had to demonstrate their solution strategy in the Picture Rotation Test (PRT) items by thinking aloud; seven different strategies were identified. In the second study these strategies were confirmed by latent class analysis (LCA) with the PRT data of n = 565 preschool children. In addition, a close relationship was found between the solution strategy and children’s age. Results point to a stage model for the development of mental-rotation ability as measured by the PRT, going from inappropriate strategies like guessing or comparing details, to semiappropriate approaches like choosing the stimulus with the smallest angle discrepancy, to a holistic or analytic strategy. A latent transition analysis (LTA) revealed that the ability to mentally rotate objects can be influenced by training in the preschool age.


2008 ◽  
Vol 29 (3) ◽  
pp. 130-133 ◽  
Author(s):  
Corinna Titze ◽  
Martin Heil ◽  
Petra Jansen

Gender differences are one of the main topics in mental rotation research. This paper focuses on the influence of the performance factor task complexity by using two versions of the Mental Rotations Test (MRT). Some 300 participants completed the test without time constraints, either in the regular version or with a complexity reducing template creating successive two-alternative forced-choice tasks. Results showed that the complexity manipulation did not affect the gender differences at all. These results were supported by a sufficient power to detect medium effects. Although performance factors seem to play a role in solving mental rotation problems, we conclude that the variation of task complexity as realized in the present study did not.


Author(s):  
Roberto Limongi ◽  
Angélica M. Silva

Abstract. The Sternberg short-term memory scanning task has been used to unveil cognitive operations involved in time perception. Participants produce time intervals during the task, and the researcher explores how task performance affects interval production – where time estimation error is the dependent variable of interest. The perspective of predictive behavior regards time estimation error as a temporal prediction error (PE), an independent variable that controls cognition, behavior, and learning. Based on this perspective, we investigated whether temporal PEs affect short-term memory scanning. Participants performed temporal predictions while they maintained information in memory. Model inference revealed that PEs affected memory scanning response time independently of the memory-set size effect. We discuss the results within the context of formal and mechanistic models of short-term memory scanning and predictive coding, a Bayes-based theory of brain function. We state the hypothesis that our finding could be associated with weak frontostriatal connections and weak striatal activity.


Author(s):  
Peter Khooshabeh ◽  
Mary Hegarty ◽  
Thomas F. Shipley

Two experiments tested the hypothesis that imagery ability and figural complexity interact to affect the choice of mental rotation strategies. Participants performed the Shepard and Metzler (1971) mental rotation task. On half of the trials, the 3-D figures were manipulated to create “fragmented” figures, with some cubes missing. Good imagers were less accurate and had longer response times on fragmented figures than on complete figures. Poor imagers performed similarly on fragmented and complete figures. These results suggest that good imagers use holistic mental rotation strategies by default, but switch to alternative strategies depending on task demands, whereas poor imagers are less flexible and use piecemeal strategies regardless of the task demands.


2012 ◽  
Vol 11 (3) ◽  
pp. 118-126 ◽  
Author(s):  
Olive Emil Wetter ◽  
Jürgen Wegge ◽  
Klaus Jonas ◽  
Klaus-Helmut Schmidt

In most work contexts, several performance goals coexist, and conflicts between them and trade-offs can occur. Our paper is the first to contrast a dual goal for speed and accuracy with a single goal for speed on the same task. The Sternberg paradigm (Experiment 1, n = 57) and the d2 test (Experiment 2, n = 19) were used as performance tasks. Speed measures and errors revealed in both experiments that dual as well as single goals increase performance by enhancing memory scanning. However, the single speed goal triggered a speed-accuracy trade-off, favoring speed over accuracy, whereas this was not the case with the dual goal. In difficult trials, dual goals slowed down scanning processes again so that errors could be prevented. This new finding is particularly relevant for security domains, where both aspects have to be managed simultaneously.


Sign in / Sign up

Export Citation Format

Share Document