scholarly journals Cortical visual area CSv as a cingulate motor area: a sensorimotor interface for the control of locomotion

Author(s):  
Andrew T. Smith

AbstractThe response properties, connectivity and function of the cingulate sulcus visual area (CSv) are reviewed. Cortical area CSv has been identified in both human and macaque brains. It has similar response properties and connectivity in the two species. It is situated bilaterally in the cingulate sulcus close to an established group of medial motor/premotor areas. It has strong connectivity with these areas, particularly the cingulate motor areas and the supplementary motor area, suggesting that it is involved in motor control. CSv is active during visual stimulation but only if that stimulation is indicative of self-motion. It is also active during vestibular stimulation and connectivity data suggest that it receives proprioceptive input. Connectivity with topographically organized somatosensory and motor regions strongly emphasizes the legs over the arms. Together these properties suggest that CSv provides a key interface between the sensory and motor systems in the control of locomotion. It is likely that its role involves online control and adjustment of ongoing locomotory movements, including obstacle avoidance and maintaining the intended trajectory. It is proposed that CSv is best seen as part of the cingulate motor complex. In the human case, a modification of the influential scheme of Picard and Strick (Picard and Strick, Cereb Cortex 6:342–353, 1996) is proposed to reflect this.

2004 ◽  
Vol 92 (5) ◽  
pp. 3030-3042 ◽  
Author(s):  
Jay Hegdé ◽  
David C. Van Essen

The firing rate of visual cortical neurons typically changes substantially during a sustained visual stimulus. To assess whether, and to what extent, the information about shape conveyed by neurons in visual area V2 changes over the course of the response, we recorded the responses of V2 neurons in awake, fixating monkeys while presenting a diverse set of static shape stimuli within the classical receptive field. We analyzed the time course of various measures of responsiveness and stimulus-related response modulation at the level of individual cells and of the population. For a majority of V2 cells, the response modulation was maximal during the initial transient response (40–80 ms after stimulus onset). During the same period, the population response was relatively correlated, in that V2 cells tended to respond similarly to specific subsets of stimuli. Over the ensuing 80–100 ms, the signal-to-noise ratio of individual cells generally declined, but to a lesser degree than the evoked-response rate during the corresponding time bins, and the response profiles became decorrelated for many individual cells. Concomitantly, the population response became substantially decorrelated. Our results indicate that the information about stimulus shape evolves dynamically and relatively rapidly in V2 during static visual stimulation in ways that may contribute to form discrimination.


2004 ◽  
Vol 92 (6) ◽  
pp. 3546-3561 ◽  
Author(s):  
James C. Beck ◽  
Edwin Gilland ◽  
David W. Tank ◽  
Robert Baker

We quantitatively studied the ontogeny of oculomotor behavior in larval fish as a foundation for studies linking oculomotor structure and function with genetics. Horizontal optokinetic and vestibuloocular reflexes (OKR and VOR, respectively) were measured in three different species (goldfish, zebrafish, and medaka) during the first month after hatching. For all sizes of medaka, and most zebrafish, Bode plots of OKR (0.065–3.0 Hz, ±10°/s) revealed that eye velocity closely followed stimulus velocity (gain > 0.8) at low frequency but dropped sharply above 1 Hz (gain < 0.3 at 3 Hz). Goldfish showed increased gain proportional to size across frequencies. Linearity testing with steps and sinusoids showed excellent visual performance (gain > 0.8) in medaka almost from hatching; but zebrafish and goldfish exhibited progressive improvement, with only the largest equaling medaka performance. Monocular visual stimulation in zebrafish and goldfish produced gains of 0.5 versus <0.1 for the eye viewing a moving versus stationary stimulus pattern but 0.25 versus <0.1 in medaka. Angular VOR appeared much later than OKR, initially at only high accelerations (>200°/s at 0.5 Hz), first in medaka followed by larger (8.11 mm) zebrafish; but it was virtually nonexistent in goldfish. Velocity storage was not observed except for an eye velocity build-up in the largest medaka. In summary, a robust OKR was achieved shortly after hatching in all three species. In contrast, larval fish seem to be unique among vertebrates tested in their lack of significant angular VOR at stages where active movement is required for feeding and survival.


1902 ◽  
Vol 48 (202) ◽  
pp. 583-584
Author(s):  
William W. Ireland

Dr. Karl Schaffer, of Budapest, gives the results of his examination of the brains of three general paralytics. His paper is illustrated with five lithographs, showing sections of brain stained by Weigerts-Wolter's method. The degenerated parts take on the stain poorly. Schaffer finds the most degenerated parts in general paralysis to be the anterior and basal portions of the frontal lobes, the whole parietal lobes, the posterior median convolutions, the insula, and the temporal gyri, and the occipital lobes and the upper surface of the cerebellum. Less affected were the anterior median gyrus, the margins of the calcarine fissure, and the inferior occipito-gyri. This showed that degenerative process most affected the association centres of Flechsig, his sensory spheres being very much less touched. Schaffer holds that the degeneration of the cortex in general paralysis is not haphazard but selective. He upholds Flechsig's views, and considers that they have been confirmed by the recent researches of Ramon y Cajal, who has made an original study of the nerve-tissues in the foetus and in the newly-born child. The latter describes a specific plexus of centripetal nerve-fibres, which terminate in the motor area of the cortex, in the sphere of bodily sensibility, and in the visual area. It is significant that this plexus does not pass into Flechsig's association centres, confirming Schaffer's observation of the posterior median convolution being, in general paralysis, much more degenerated than the anterior. These considerations induce Schaffer to think that the posterior median gyrus belongs rather to the association centres than to the sensory areas.


Blood ◽  
1998 ◽  
Vol 91 (3) ◽  
pp. 830-843 ◽  
Author(s):  
Françoise Norol ◽  
Natacha Vitrat ◽  
Elisabeth Cramer ◽  
Josette Guichard ◽  
Samuel A. Burstein ◽  
...  

Abstract The late stages of megakaryocytopoiesis, consisting of the terminal processes of cytoplasmic maturation and platelet shedding, remain poorly understood. A simple liquid culture system using CD34+ cells in serum-free medium has been developed to study the regulation of platelet production in vitro. Platelets produced in vitro were enumerated by flow cytometry. A truncated form of human Mpl-Ligand conjugated to polyethylene glycol (PEG-rHuMGDF) played a crucial role in both proplatelet formation and platelet production. A combination of stem cell factor (SCF), interleukin-3 (IL-3), and IL-6 was as potent as PEG-rHuMGDF for the growth of megakaryocytes (MKs). However, the number of proplatelet-displaying MKs and platelets was increased 10-fold when PEG-rHuMGDF was used. Peripheral blood mobilized CD34+ cells gave rise to a threefold augmentation of platelets compared with marrow CD34+ cells. This finding was related to the higher proliferative capacity of the former population because the proportion of proplatelet-displaying MKs was similar for both types of CD34+ cells. The production of platelets per MK from CD34+ cells was low, perhaps because of the low ploidy of the cultured MKs. This defect in polyploidization correlated with the degree of proliferation of MK progenitors induced by cytokines. In contrast, ploidy development closer to that observed in marrow MKs was observed in MKs derived from the low proliferative CD34+CD41+ progenitors and was associated with a twofold to threefold increment in platelet production per MK. As shown using this CD34+ CD41+ cell population, PEG-rHuMGDF was required throughout the culture period to potently promote platelet production, but was not involved directly in the process of platelet shedding. IL-3, SCF, and IL-6 alone had a very weak effect on proplatelet formation and platelet shedding. Surprisingly, when used in combination, these cytokines elicited a degree of platelet production which was decreased only 2.4-fold in comparison with PEG-rHuMGDF. This suggests that proplatelet formation may be inhibited by non-MK cells which contaminate the cultures when the entire CD34+ cell population is used. Cultured platelets derived from PEG-rHuMGDF– or cytokine combination-stimulated cultures had similar ultrastructural features and a nearly similar response to activation by thrombin. The data show that this culture system may be useful to study the effects of cytokines and the role of polyploidization on platelet production and function.


2016 ◽  
Vol 127 (1) ◽  
pp. 530-536 ◽  
Author(s):  
Piotr Januszko ◽  
Szymon Niemcewicz ◽  
Tomasz Gajda ◽  
Dorota Wołyńczyk-Gmaj ◽  
Anna Justyna Piotrowska ◽  
...  

2015 ◽  
Vol 113 (7) ◽  
pp. 2845-2858 ◽  
Author(s):  
Yoshihisa Nakayama ◽  
Osamu Yokoyama ◽  
Eiji Hoshi

The caudal cingulate motor area (CMAc) and the supplementary motor area (SMA) play important roles in movement execution. The present study aimed to characterize the functional organization of these regions during movement by investigating laterality representations in the CMAc and SMA of monkeys via an examination of neuronal activity during a button press movement with either the right or left hand. Three types of movement-related neuronal activity were observed: 1) with only the contralateral hand, 2) with only the ipsilateral hand, and 3) with either hand. Neurons in the CMAc represented contralateral and ipsilateral hand movements to the same degree, whereas neuronal representations in the SMA were biased toward contralateral hand movement. Furthermore, recording neuronal activities using a linear-array multicontact electrode with 24 contacts spaced 150 μm apart allowed us to analyze the spatial distribution of neurons exhibiting particular hand preferences at the submillimeter scale. The CMAc and SMA displayed distinct microarchitectural organizations. The contralateral, ipsilateral, and bilateral CMAc neurons were distributed homogeneously, whereas SMA neurons exhibiting identical hand preferences tended to cluster. These findings indicate that the CMAc, which is functionally organized in a less structured manner than the SMA is, controls contralateral and ipsilateral hand movements in a counterbalanced fashion, whereas the SMA, which is more structured, preferentially controls contralateral hand movements.


1997 ◽  
Vol 77 (4) ◽  
pp. 2197-2201 ◽  
Author(s):  
Nathalie Picard ◽  
Peter L. Strick

Picard, Nathalie and Peter L. Strick. Activation on the medial wall during remembered sequences of reaching movements in monkeys. J. Neurophysiol. 77: 2197–2201, 1997. We used the 2-deoxyglucose (2DG) method to map activation in the motor areas on the medial wall of the hemisphere. One group of monkeys licked juice delivered at variable time intervals (LICK task). For these animals, the motor areas on the medial wall displayed restricted activation. 2DG uptake was limited largely to the face representation of the supplementary motor area (SMA). Additional labeling was present more rostrally in the banks of the cingulate sulcus. A second group of animals performed remembered sequences of reaching movements (REM task) for juice rewards. Activation related to licking also was present in this group. In addition, separate, discrete activations were found on the superior frontal gyrus and in the cingulate sulcus during the REM task. The most intense and extensive 2DG labeling was located in the dorsal bank of the cingulate sulcus, coincident with the dorsal cingulate motor area (CMAd). Weaker activations were present in the arm area of the SMA and in the pre-SMA. There was no significant 2DG incorporation in the ventral bank of the cingulate sulcus where the ventral cingulate motor area is located. Our findings suggest that the CMAd is involved more than any other medial area in the preparation for and/or execution of highly practiced, remembered sequences of movements. Overall, our results indicate that the attributes of motor control are not represented equally across the motor areas on the medial wall.


Blood ◽  
1998 ◽  
Vol 91 (3) ◽  
pp. 830-843 ◽  
Author(s):  
Françoise Norol ◽  
Natacha Vitrat ◽  
Elisabeth Cramer ◽  
Josette Guichard ◽  
Samuel A. Burstein ◽  
...  

The late stages of megakaryocytopoiesis, consisting of the terminal processes of cytoplasmic maturation and platelet shedding, remain poorly understood. A simple liquid culture system using CD34+ cells in serum-free medium has been developed to study the regulation of platelet production in vitro. Platelets produced in vitro were enumerated by flow cytometry. A truncated form of human Mpl-Ligand conjugated to polyethylene glycol (PEG-rHuMGDF) played a crucial role in both proplatelet formation and platelet production. A combination of stem cell factor (SCF), interleukin-3 (IL-3), and IL-6 was as potent as PEG-rHuMGDF for the growth of megakaryocytes (MKs). However, the number of proplatelet-displaying MKs and platelets was increased 10-fold when PEG-rHuMGDF was used. Peripheral blood mobilized CD34+ cells gave rise to a threefold augmentation of platelets compared with marrow CD34+ cells. This finding was related to the higher proliferative capacity of the former population because the proportion of proplatelet-displaying MKs was similar for both types of CD34+ cells. The production of platelets per MK from CD34+ cells was low, perhaps because of the low ploidy of the cultured MKs. This defect in polyploidization correlated with the degree of proliferation of MK progenitors induced by cytokines. In contrast, ploidy development closer to that observed in marrow MKs was observed in MKs derived from the low proliferative CD34+CD41+ progenitors and was associated with a twofold to threefold increment in platelet production per MK. As shown using this CD34+ CD41+ cell population, PEG-rHuMGDF was required throughout the culture period to potently promote platelet production, but was not involved directly in the process of platelet shedding. IL-3, SCF, and IL-6 alone had a very weak effect on proplatelet formation and platelet shedding. Surprisingly, when used in combination, these cytokines elicited a degree of platelet production which was decreased only 2.4-fold in comparison with PEG-rHuMGDF. This suggests that proplatelet formation may be inhibited by non-MK cells which contaminate the cultures when the entire CD34+ cell population is used. Cultured platelets derived from PEG-rHuMGDF– or cytokine combination-stimulated cultures had similar ultrastructural features and a nearly similar response to activation by thrombin. The data show that this culture system may be useful to study the effects of cytokines and the role of polyploidization on platelet production and function.


Sign in / Sign up

Export Citation Format

Share Document