An extended Human Connectome Project multimodal parcellation atlas of the human cortex and subcortical areas

Author(s):  
Chu-Chung Huang ◽  
Edmund T. Rolls ◽  
Jianfeng Feng ◽  
Ching-Po Lin
2018 ◽  
Vol 15 (suppl_1) ◽  
pp. S436-S443 ◽  
Author(s):  
Andrew K Conner ◽  
Robert G Briggs ◽  
Goksel Sali ◽  
Meherzad Rahimi ◽  
Cordell M Baker ◽  
...  

ABSTRACT The inferior fronto-occipital fasciculus (IFOF) is a large white matter tract of the human cerebrum with functional connectivity associated with semantic language processing and goal-oriented behavior. However, little is known regarding the overall connectivity of this tract. Recently, the Human Connectome Project parcellated the human cortex into 180 distinct regions. In our other work, we have shown these various regions in relation to clinically applicable anatomy and function. Utilizing Diffusion Spectrum Magnetic Resonance Imaging tractography coupled with the human cortex parcellation data presented earlier in this supplement, we aim to describe the macro-connectome of the IFOF in relation to the linked parcellations present within the human cortex. The purpose of this study is to present this information in an indexed, illustrated, and tractographically aided series of figures and tables for anatomic and clinical reference.


2018 ◽  
Vol 15 (suppl_1) ◽  
pp. S407-S422 ◽  
Author(s):  
Andrew K Conner ◽  
Robert G Briggs ◽  
Meherzad Rahimi ◽  
Goksel Sali ◽  
Cordell M Baker ◽  
...  

ABSTRACT The superior longitudinal fasciculus/arcuate white matter complex (SLF/AC) is the largest and most complex white matter tract of the human cerebrum with multiple inter-linked connections encompassing multiple cognitive functions such as language, attention, memory, emotion, and visuospatial function. However, little is known regarding the overall connectivity of this complex. Recently, the Human Connectome Project parcellated the human cortex into 180 distinct regions. Utilizing diffusion spectrum magnetic resonance imaging tractography coupled with the human cortex parcellation data presented earlier in this supplement, we aim to describe the macro-connectome of the SLF/AC in relation to the linked parcellations present within the human cortex. The purpose of this study is to present this information in an indexed, illustrated, and tractographically aided series of figures and tables for anatomic and clinical reference.


2020 ◽  
Vol 30 (8) ◽  
pp. 4361-4380 ◽  
Author(s):  
Moataz Assem ◽  
Matthew F Glasser ◽  
David C Van Essen ◽  
John Duncan

Abstract Numerous brain imaging studies identified a domain-general or “multiple-demand” (MD) activation pattern accompanying many tasks and may play a core role in cognitive control. Though this finding is well established, the limited spatial localization provided by traditional imaging methods precluded a consensus regarding the precise anatomy, functional differentiation, and connectivity of the MD system. To address these limitations, we used data from 449 subjects from the Human Connectome Project, with the cortex of each individual parcellated using neurobiologically grounded multimodal MRI features. The conjunction of three cognitive contrasts reveals a core of 10 widely distributed MD parcels per hemisphere that are most strongly activated and functionally interconnected, surrounded by a penumbra of 17 additional areas. Outside cerebral cortex, MD activation is most prominent in the caudate and cerebellum. Comparison with canonical resting-state networks shows MD regions concentrated in the fronto-parietal network but also engaging three other networks. MD activations show modest relative task preferences accompanying strong co-recruitment. With distributed anatomical organization, mosaic functional preferences, and strong interconnectivity, we suggest MD regions are well positioned to integrate and assemble the diverse components of cognitive operations. Our precise delineation of MD regions provides a basis for refined analyses of their functions.


2019 ◽  
Author(s):  
Moataz Assem ◽  
Matthew F. Glasser ◽  
David C. Van Essen ◽  
John Duncan

AbstractNumerous brain imaging studies identified a domain-general or “multiple-demand” (MD) activation pattern accompanying many tasks and may play a core role in cognitive control. Though this finding is well established, the limited spatial localization provided by traditional imaging methods precluded a consensus regarding the precise anatomy, functional differentiation and connectivity of the MD system. To address these limitations, we used data from 449 subjects from the Human Connectome Project, with cortex of each individual parcellated using neurobiologically grounded multi-modal MRI features. The conjunction of three cognitive contrasts reveals a core of 10 widely distributed MD parcels per hemisphere that are most strongly activated and functionally interconnected, surrounded by a penumbra of 17 additional areas. Outside cerebral cortex, MD activation is most prominent in the caudate and cerebellum. Comparison with canonical resting state networks shows MD regions concentrated in the fronto-parietal network but also engaging three other networks. MD activations show modest relative task preferences accompanying strong co-recruitment. With distributed anatomical organization, mosaic functional preferences, and strong interconnectivity, we suggest MD regions are well positioned to integrate and assemble the diverse components of cognitive operations. Our precise delineation of MD regions provides a basis for refined analyses of their functions.


2017 ◽  
Author(s):  
R. Hindriks ◽  
C. Micheli ◽  
D. Mantini ◽  
G. Deco

AbstractIn the resting-state, extended regions of the human cortex engage in electrical oscillations within the alpha-frequency band (7–14 Hz) that can be measured outside the head by magnetoencephalography (MEG). Given the accumulating evidence that alpha oscillations play a fundamental role in attentional processing and working memory, it becomes increasingly important to characterize their cortical organization. Event-related studies have demonstrated that attentional allocation can modulate alpha power selectively within the visual, auditory, and somatosensory cortices, as well as in higher-level regions. Such studies demonstrate the existence of multiple generators by exploiting experimental contrasts and trial-averaging. The identification of alpha generators from resting-state data alone has proven much harder and, consequently, relatively little is known about their organization: Apart from the classical visual, somatosensory, and auditory rhythms, it is unclear how many more generators can be observed with MEG and how they are organized into functional networks. Such knowledge, however, possibly enables to delineate separate cognitive, perceptual, and motor processes that co-occur in the resting-state and is therefore important. In this study we use the resting-state MEG data-set provided by the Human Connectome Project to identify cortical alpha generators and to characterize their organization into functional networks. The large number of subjects (N = 94), multiple scans per subject, and state-of-the-art surface-based cortical registration enable a detailed characterization of alpha in human cortex. By applying non-negative matrix factorization to source-projected power fluctuations, we identify 16 reliable cortical generators in each hemisphere. These include the classical sensory alpha rhythms as well as several additional ones in the lateral occipital and temporal lobes and in inferior parietal cortex. We show that the generators are coordinated across hemispheres and hence form resting-state networks (RSNs), two of which are the default mode network (DMN) and the ventral attention network (VAN). Our study hence provides a further subdivision of RSNs within the alpha frequency band and shows that these RSNs are supported by alpha generators. As such, it links the classical literature on human alpha with more recent research into electrophysiological RNSs.


2018 ◽  
Vol 15 (suppl_1) ◽  
pp. S1-S9 ◽  
Author(s):  
Cordell M Baker ◽  
Joshua D Burks ◽  
Robert G Briggs ◽  
Andrew K Conner ◽  
Chad A Glenn ◽  
...  

ABSTRACT BACKGROUND As knowledge of the brain has increased, clinicians have learned that the cerebrum is composed of complex networks that interact to execute key functions. While neurosurgeons can typically predict and preserve primary cortical function through the primary visual and motor cortices, preservation of higher cognitive functions that are less well localized in regions previously deemed “silent” has proven more difficult. This suggests these silent cortical regions are more anatomically complex and redundant than our previous methods of inquiry can explain, and that progress in cerebral surgery will be made with an improved understanding of brain connectomics. Newly published parcellated cortex maps provide one avenue to study such connectomics in greater detail, and they provide a superior framework and nomenclature for studying cerebral function and anatomy. OBJECTIVE To describe the structural and functional aspects of the 180 distinct areas that comprise the human cortex model previously published under the Human Connectome Project (HCP). METHODS We divided the cerebrum into 8 macroregions: lateral frontal, motor/premotor, medial frontal, insular, temporal, lateral parietal, medial parietal, and occipital. These regions were further subdivided into their relevant parcellations based on the HCP cortical scheme. Connectome Workbench was used to localize parcellations anatomically and to demonstrate their functional connectivity. DSI studio was used to assess the structural connectivity for each parcellation. RESULTS The anatomy, functional connectivity, and structural connectivity of all 180 cortical parcellations identified in the HCP are compiled into a single atlas. Within each section of the atlas, we integrate this information, along with what is known about parcellation function to summarize the implications of these data on network connectivity. CONCLUSION This multipart supplement aims to build on the work of the HCP. We present this information in the hope that the complexity of cerebral connectomics will be conveyed in a more manageable format that will allow neurosurgeons and neuroscientists to accurately communicate and formulate hypotheses regarding cerebral anatomy and connectivity. We believe access to this information may provide a foundation for improving surgical outcomes by preserving lesser-known networks.


2020 ◽  
Author(s):  
Mehrshad Golesorkhi ◽  
Javier Gomez-Pilar ◽  
Shankar Tumati ◽  
Maia Fraser ◽  
Georg Northoff

AbstractThe human cortex exhibits intrinsic neural timescales that shape a temporal hierarchy. Whether this temporal hierarchy follows the spatial hierarchy of core-periphery organization remains an open issue. Using Magnetoencephalography data from the Human Connectome Project, we investigate intrinsic neural timescales during rest and task states; we measure the autocorrelation window in short (ACW-50) and, introducing a novel variant, long (ACW-0) windows. We demonstrate longer ACW-50 and ACW-0 in networks located at the core compared to those at the periphery with rest and task states showing a high ACW correlation. Calculating rest-task differences, i.e., subtracting the shared core-periphery organization, reveals task-specific ACW changes in distinct networks. Finally, employing kernel density estimation, machine learning, and simulation, we demonstrate that ACW-0 exhibits better prediction in classifying a region’s time window as core or periphery. Overall, our findings provide fundamental insight into how the human cortex’s temporal hierarchy converges with its spatial core-periphery hierarchy.


2008 ◽  
Vol 39 (01) ◽  
Author(s):  
M Olma ◽  
T Donner ◽  
A Kettermann ◽  
A Kraft ◽  
W Sommer ◽  
...  

2019 ◽  
Author(s):  
Scott D. Blain ◽  
Rachael Grazioplene ◽  
Yizhou Ma ◽  
Colin G. DeYoung

Psychosis proneness has been linked to heightened Openness to Experience and to cognitive deficits. Openness and psychotic disorders are associated with the default and frontoparietal networks, and the latter network is also robustly associated with intelligence. We tested the hypothesis that functional connectivity of the default and frontoparietal networks is a neural correlate of the openness-psychoticism dimension. Participants in the Human Connectome Project (N = 1003) completed measures of psychoticism, openness, and intelligence. Resting state functional magnetic resonance imaging was used to identify intrinsic connectivity networks. Structural equation modeling revealed relations among personality, intelligence, and network coherence. Psychoticism, openness, and especially their shared variance, were related positively to default network coherence and negatively to frontoparietal coherence. These associations remained after controlling for intelligence. Intelligence was positively related to frontoparietal coherence. Research suggests psychoticism and openness are linked in part through their association with connectivity in networks involving experiential simulation and cognitive control. We propose a model of psychosis risk that highlights roles of the default and frontoparietal networks. Findings echo research on functional connectivity in psychosis patients, suggesting shared mechanisms across the personality-psychopathology continuum.


Sign in / Sign up

Export Citation Format

Share Document