scholarly journals Correction to: Afatinib is active in osteosarcoma cell lines

2020 ◽  
Vol 146 (10) ◽  
pp. 2719-2719
Author(s):  
Marlid Cruz-Ramos ◽  
Yessica Zamudio-Cuevas ◽  
Daniel Medina-Luna ◽  
Karina Martínez-Flores ◽  
Gabriela Martínez-Nava ◽  
...  
Keyword(s):  
2021 ◽  
Vol 14 (6) ◽  
pp. 532
Author(s):  
Muhammad Nazirul Mubin Aziz ◽  
Nurul Fattin Che Rahim ◽  
Yazmin Hussin ◽  
Swee Keong Yeap ◽  
Mas Jaffri Masarudin ◽  
...  

Osteosarcoma (OS) is a life-threatening malignant bone tumor associated with poor prognosis among children. The survival rate of the patient is still arguably low even with intensive treatment provided, plus with the inherent side effects from the chemotherapy, which gives more unfavorable outcomes. Hence, the search for potent anti-osteosarcoma agent with promising safety profile is still on going. Natural occurring substance like curcumin has gained a lot of attention due to its splendid safety profile as well as it pharmacological advantages such as anti-metastasis and anti-angiogenesis. However, natural curcumin was widely known for its poor cellular uptake, which undermines all potential that it possesses. This prompted the development of synthetically synthesized curcuminoid analog, known as (Z)-3-hydroxy-1-(2-hydroxyphenyl)-3-phenylprop-2- en-1-one (DK1). In this present study, in vitro scratch assay, transwell migration/invasion assay, HUVEC tube formation assay, and ex vivo rat aortic ring assays were performed in order to investigate the anti-metastatic and anti-angiogenic potential of DK1. For further comprehension of DK1 mechanism on human osteosarcoma cell lines, microarray gene expression analysis, quantitative polymerase chain reaction (qPCR), and proteome profiler were adopted, providing valuable forecast from the expression of important genes and proteins related to metastasis and angiogenesis. Based on the data gathered from the bioassays, DK1 was able to inhibit the metastasis and angiogenesis of human osteosarcoma cell lines by significantly reducing the cell motility, number of migrated and invaded cells as well as the tube formation and micro-vessels sprouting. Additionally, DK1 also has significantly regulated several cancer pathways involved in OS proliferation, metastasis, and angiogenesis such as PI3K/Akt and NF-κB in both U-2 OS and MG-63. Regulation of PI3K/Akt caused up-regulation of genes related to metastasis inhibition, namely, PTEN, FOXO, PLK3, and GADD45A. Meanwhile, NF-κB pathway was regulated by mitigating the expression of NF-κB activator such as IKBKB and IKBKE in MG-63, whilst up-regulating the expression of NF-κB inhibitors such as NFKBIA and NFKBIE in U-2 OS. Finally, DK1 also has successfully hindered the metastatic and angiogenic capability of OS cell lines by down-regulating the expression of pro-metastatic genes and proteins like MMP3, COL11A1, FGF1, Endoglin, uPA, and IGFBP2 in U-2 OS. Whilst for MG-63, the significantly down-regulated oncogenes were Serpin E1, AKT2, VEGF, uPA, PD-ECGF, and Endoglin. These results suggest that curcumin analog DK1 may serve as a potential new anti-osteosarcoma agent due to its anti-metastatic and anti-angiogenic attributes.


2020 ◽  
Vol 15 (1) ◽  
pp. 871-883
Author(s):  
Jinshan Zhang ◽  
Dan Rao ◽  
Haibo Ma ◽  
Defeng Kong ◽  
Xiaoming Xu ◽  
...  

AbstractBackgroundOsteosarcoma is a common primary malignant bone cancer. Long noncoding RNA small nucleolar RNA host gene 15 (SNHG15) has been reported to play an oncogenic role in many cancers. Nevertheless, the role of SNHG15 in the doxorubicin (DXR) resistance of osteosarcoma cells has not been fully addressed.MethodsCell Counting Kit-8 assay was conducted to measure the half-maximal inhibitory concentration value of DXR in osteosarcoma cells. Western blotting was carried out to examine the levels of autophagy-related proteins and GDNF family receptor alpha-1 (GFRA1). Quantitative reverse transcription-polymerase chain reaction was performed to determine the levels of SNHG15, miR-381-3p, and GFRA1. The proliferation of osteosarcoma cells was measured by MTT assay. The binding sites between miR-381-3p and SNHG15 or GFRA1 were predicted by Starbase bioinformatics software, and the interaction was confirmed by dual-luciferase reporter assay. Murine xenograft model was established to validate the function of SNHG15 in vivo.ResultsAutophagy inhibitor 3-methyladenine sensitized DXR-resistant osteosarcoma cell lines to DXR. SNHG15 was upregulated in DXR-resistant osteosarcoma tissues and cell lines. SNHG15 knockdown inhibited the proliferation, DXR resistance, and autophagy of osteosarcoma cells. MiR-381-3p was a direct target of SNHG15, and GFRA1 bound to miR-381-3p in osteosarcoma cells. SNHG15 contributed to DXR resistance through the miR-381-3p/GFRA1 axis in vitro. SNHG15 depletion contributed to the inhibitory effect of DXR on osteosarcoma tumor growth through the miR-381-3p/GFRA1 axis in vivo.ConclusionsSNHG15 enhanced the DXR resistance of osteosarcoma cells through elevating the autophagy via targeting the miR-381-3p/GFRA1 axis. Restoration of miR-381-3p expression might be an underlying therapeutic strategy to overcome the DXR resistance of osteosarcoma.


Bone Reports ◽  
2021 ◽  
Vol 14 ◽  
pp. 100898
Author(s):  
Camille Jubelin ◽  
Denis Cochonneau ◽  
Javier Munoz-Garcia ◽  
Emilie Moranton ◽  
Marie-Françoise Heymann ◽  
...  
Keyword(s):  

2015 ◽  
Vol 152 (1) ◽  
pp. 69
Author(s):  
D. Poradowski ◽  
B. Obmin′ ska-Mrukowicz ◽  
R. Ciaputa ◽  
M. Kandefer-Gola ◽  
M. Nowak ◽  
...  
Keyword(s):  

2009 ◽  
Vol 61 (1-2) ◽  
pp. 37-44 ◽  
Author(s):  
Xiang Chen ◽  
Tong-Tao Yang ◽  
Wei Wang ◽  
Hong-Hui Sun ◽  
Bao-An Ma ◽  
...  

2020 ◽  
pp. 1-6

Purpose: Various bone grafting substitutes have been used in the periodontics for bone regeneration which include autografts, allografts, xenografts and alloplasts. Autogenous particulate dentin has been used successfully as a bone grafting substitute. The aim of present study was to evaluate the effect of demineralized and mineralized freeze-dried bone allograft and particulate dentin on osteoblasts-like cells and human periodontal fibroblasts. Materials and methods: Demineralized freeze-dried bone allograft (DFDBA) and freeze-dried bone allograft (FDBA) and ground dentin was used in the study. Particulate dentin was divided into four groups according to the size of the particles and demineralization - small dentin (particle size less than 200 µm), small dentin demineralized, large dentin (particle size 250-1200 µm), large dentin demineralized. Effect of all the specimens was checked on osteoblast-like cells (MG63) and human periodontal ligament cell lines. Percentage of surviving cells was measured using colorimetric MTT assay spectrophotometrically on 7th and 14th day of the cell culture. Scanning electron microscopy (SEM) was used to check the cellular attachment. Results: Demineralized dentin matrix has shown significantly enhanced viable cell percentage for both the cell lines. DFDBA and demineralized dentin has reported comparable percentage of surviving cells. Dentin seems to be more compatible with osteoblastslike cells than fibroblast. FDBA has shown the least favorable results. Cellular attachment for both the cell lines can be appreciated on SEM images. Conclusion: Demineralized particulate dentin has reported considerable percentage of cell viability making it a reasonable option for bone grafting substitute.


2018 ◽  
Vol 38 (6) ◽  
Author(s):  
Xiong Wang ◽  
Lei Zhang ◽  
Wenji Wang ◽  
Yuchen Wang ◽  
Ye Chen ◽  
...  

Human osteosarcoma is the most frequent primary malignant of bone, and often occurs in adolescents. However, molecular mechanism of this disease remains unclear. In the present study, we found that the level of Rhotekin 2 (RTKN2) was up-regulated in osteosarcoma tissues and cell lines. In addition, silencing of RTKN2 of human osteosarcoma cell lines U2OS, inhibited proliferation, and induced G1 phase cell cycle arrest via reducing the level of the cyclin-dependent kinase 2 (CDK2). Furthermore, RTKN2 knockdown in the U2OS cells induced apoptosis by increasing the level of Bax and decreasing the level of Bcl2. These results suggested that RTKN2 is involved in the progression of human osteosarcoma, and may be a potential therapeutic target.


2016 ◽  
Vol 218 ◽  
pp. 51-59 ◽  
Author(s):  
S.M. Ong ◽  
K. Saeki ◽  
Y. Tanaka ◽  
R. Nishimura ◽  
T. Nakagawa

2020 ◽  
Author(s):  
Juan Miguel Baquero ◽  
Carlos Benítez-Buelga ◽  
Varshni Rajagopal ◽  
Zhao Zhenjun ◽  
Raúl Torres-Ruiz ◽  
...  

Abstract Background: The most common oxidative DNA lesion is 8-oxoguanine (8-oxoG) which is mainly recognized and excised by the glycosylase OGG1, initiating the Base Excision Repair (BER) pathway. Telomeres are particularly sensitive to oxidative stress which disrupts telomere homeostasis triggering genome instability. Methods: We used U2OS OGG1-GFP osteosarcoma cell line to study the role of OGG1 at the telomeres in response to oxidative stress. Next, we investigated the effects of inactivating pharmacologically the BER during oxidative stress (OS) conditions by using a specific small molecule inhibitor of OGG1 (TH5487) in different human cell lines. Results: We have found that during OS, TH5487 effectively blocks BER initiation at telomeres causing accumulation of oxidized bases at this region, correlating with other phenotypes such as telomere losses, micronuclei formation and mild proliferation defects. Besides, the antimetabolite Methotrexate synergizes with TH5487 through induction of intracellular ROS formation, which potentiates TH5487 mediated telomere and genome instability in different cell lines. Conclusions: Our findings demonstrate that OGG1 is required to protect telomeres from OS and present OGG1 inhibitors as a tool to induce oxidative DNA damage at telomeres, with the potential for developing new combination therapies for cancer treatment.


Sign in / Sign up

Export Citation Format

Share Document