Measurements of spatial population synchrony: influence of time series transformations

Oecologia ◽  
2015 ◽  
Vol 179 (1) ◽  
pp. 15-28 ◽  
Author(s):  
Mathieu Chevalier ◽  
Pascal Laffaille ◽  
Jean-Baptiste Ferdy ◽  
Gaël Grenouillet
2021 ◽  
Author(s):  
Adam Pepi ◽  
Patrick Grof-Tisza ◽  
Marcel Holyoak ◽  
Richard Karban

Dispersal is a key driver of spatial population dynamics. Dispersal behavior may be shaped by many factors, such as mate-finding, the spatial distribution of resources, or wind and currents, yet most models of spatial dynamics assume random dispersal. We examined the spatial dynamics of a day-flying moth species (Arctia virginalis) that forms mating aggregations on hilltops (hilltopping) based on long-term adult and larval population censuses. Using time-series models, we compared spatial population dynamics resulting from empirically-founded hilltop-based connectivity indices, and modeled the interactive effects of temperature, precipitation, and density dependence. Model comparisons supported hilltop-based connectivity metrics over random connectivity, suggesting an effect of hilltopping behavior on dynamics. We also found strong interactive effects of temperature and precipitation on dynamics. Simulations based on fitted time series models showed lower patch occupancy and regional synchrony, and higher colonization and extinction rates when hilltopping was included, with potential implications for the probability of persistence of the patch network. Overall, our results show the potential for dispersal behavior to have important effects on spatial population dynamics and persistence, and we advocate inclusion of such non-random dispersal in metapopulation models.


Ecography ◽  
2020 ◽  
Vol 43 (11) ◽  
pp. 1591-1602 ◽  
Author(s):  
Brage B. Hansen ◽  
Vidar Grøtan ◽  
Ivar Herfindal ◽  
Aline M. Lee

PLoS ONE ◽  
2014 ◽  
Vol 9 (1) ◽  
pp. e87084 ◽  
Author(s):  
Hugues Santin-Janin ◽  
Bernard Hugueny ◽  
Philippe Aubry ◽  
David Fouchet ◽  
Olivier Gimenez ◽  
...  

1994 ◽  
Vol 144 ◽  
pp. 279-282
Author(s):  
A. Antalová

AbstractThe occurrence of LDE-type flares in the last three cycles has been investigated. The Fourier analysis spectrum was calculated for the time series of the LDE-type flare occurrence during the 20-th, the 21-st and the rising part of the 22-nd cycle. LDE-type flares (Long Duration Events in SXR) are associated with the interplanetary protons (SEP and STIP as well), energized coronal archs and radio type IV emission. Generally, in all the cycles considered, LDE-type flares mainly originated during a 6-year interval of the respective cycle (2 years before and 4 years after the sunspot cycle maximum). The following significant periodicities were found:• in the 20-th cycle: 1.4, 2.1, 2.9, 4.0, 10.7 and 54.2 of month,• in the 21-st cycle: 1.2, 1.6, 2.8, 4.9, 7.8 and 44.5 of month,• in the 22-nd cycle, till March 1992: 1.4, 1.8, 2.4, 7.2, 8.7, 11.8 and 29.1 of month,• in all interval (1969-1992):a)the longer periodicities: 232.1, 121.1 (the dominant at 10.1 of year), 80.7, 61.9 and 25.6 of month,b)the shorter periodicities: 4.7, 5.0, 6.8, 7.9, 9.1, 15.8 and 20.4 of month.Fourier analysis of the LDE-type flare index (FI) yields significant peaks at 2.3 - 2.9 months and 4.2 - 4.9 months. These short periodicities correspond remarkably in the all three last solar cycles. The larger periodicities are different in respective cycles.


Sign in / Sign up

Export Citation Format

Share Document