Linking functional group richness and ecosystem functions of dung beetles: an experimental quantification

Oecologia ◽  
2016 ◽  
Vol 183 (1) ◽  
pp. 177-190 ◽  
Author(s):  
Tanja Milotić ◽  
Stijn Quidé ◽  
Thomas Van Loo ◽  
Maurice Hoffmann
Forests ◽  
2020 ◽  
Vol 12 (1) ◽  
pp. 25
Author(s):  
László Somay ◽  
Viktor Szigeti ◽  
Gergely Boros ◽  
Réka Ádám ◽  
András Báldi

Wood pastures are home to a variety of species, including the dung beetle. Dung beetles are an important functional group in decomposition. Specifically, in terms of livestock manure, they not only contribute to nutrient cycling but are key players in supporting human and animal health. Dung beetles, however, are declining in population, and urgent recommendations are needed to reverse this trend. Recommendations need to be based on solid evidence and specific habitats. Herein, we aimed to investigate the role of an intermediate habitat type between forests and pastures. Wood pastures are key areas for dung beetle conservation. For this reason, we compared dung beetle assemblages among forests, wood pastures, and grasslands. We complemented this with studies on the effects of dung type and season at three Hungarian locations. Pitfall traps baited with cattle, sheep, or horse dung were used in forests, wood pastures, and pasture habitats in spring, summer, and autumn. Dung beetle assemblages of wood pastures showed transient characteristics between forests and pastures regarding their abundance, species richness, Shannon diversity, assemblage composition, and indicator species. We identified a strong effect of season and a weak of dung type. Assemblage composition proved to be the most sensitive measure of differences among habitats. The conservation of dung beetles, and the decomposition services they provide, need continuous livestock grazing to provide fresh dung, as well as the maintenance of wood pastures where dung beetle assemblages typical of forests and pastures can both survive.


2021 ◽  
Author(s):  
Li Zhang ◽  
Xiang Liu ◽  
Shurong Zhou ◽  
Bill Shipley

Abstract Aims While recent studies have shown the importance of intraspecific trait variation in the processes of community assembly, we still know little about the contributions of intraspecific trait variability to ecosystem functions. Methods Here, we conducted a functional group removal experiment in an alpine meadow in Qinghai-Tibetan Plateau over four years to investigate the relative importance of inter- and intra-specific variability in plant height for productivity. We split total variability in plant height within each of 75 manipulated communities into interspecific variability (TVinter) and intraspecific variability within a community (ITVwithin). Community weighted mean height among communities was decomposed into fixed community weighted mean (CWMfixed) and intraspecific variability among communities (ITVamong). We constructed a series of generalized additive mixed models and piecewise structural equation modelling to determine how trait variability (i.e., TVinter, ITVwithin, CWMfixed and ITVamong) indirectly mediated the changes in productivity in response to functional group removal. Important Findings Community productivity was not only affected directly by treatment manipulations, but also increased with both inter- and intra-specific variability (i.e., CWMfixed, ITVamong) in plant height indirectly. This suggests that both the “selection effect” and a “shade-avoidance syndrome” can incur higher CWMfixed and ITVamong, and may simultaneously operate to regulate productivity. Our findings provide new evidence that, besides interspecific variability, intraspecific trait variability in plant height also plays a role in maintaining net primary productivity.


2009 ◽  
Vol 25 (6) ◽  
pp. 677-680 ◽  
Author(s):  
Janice Ser Huay Lee ◽  
Ian Qian Wei Lee ◽  
Susan Lee-Hong Lim ◽  
Johannes Huijbregts ◽  
Navjot S. Sodhi

With increasing conversion of South-East Asian forests to human-dominated landscapes, dramatic changes in biodiversity are likely to have ramifications on ecosystem processes (Sodhi & Brook 2006). Dung beetles (Coleoptera: Scarabaeidae) have been used to investigate how biodiversity changes affect ecosystem functions (Larsen et al. 2005, Slade et al. 2007). Dung beetles provide important ecosystem services such as dung removal and secondary seed dispersal (Nichols et al. 2008) and have been shown to be reliable indicators of tropical forest disturbance (Gardner et al. 2008, Klein 1989). Here, we determine the effects of forest disturbance on the species richness of dung beetles and ecosystem functions they perform in Peninsular Malaysia and Singapore. As far as we know, there has been no known study published on dung beetle ecology on the Malay Peninsula. In this study, we test the hypothesis that old-growth forests contain dung beetle communities of higher species richness, abundance, biomass and larger body size. Previous studies have shown that changes in dung beetle communities have the potential to disrupt ecosystem services in natural habitats (Larsen et al. 2005, Mittal 1993). We also investigate whether dung removal is affected by forest disturbance and test the hypothesis that dung removal is reduced in more disturbed forests compared with less-disturbed forests.


PLoS ONE ◽  
2010 ◽  
Vol 5 (3) ◽  
pp. e9677 ◽  
Author(s):  
Jeremy Lundholm ◽  
J. Scott MacIvor ◽  
Zachary MacDougall ◽  
Melissa Ranalli

2019 ◽  
Vol 30 (3) ◽  
pp. 69-82
Author(s):  
Abdullah Muhaimin Mohammad Din ◽  
◽  
Wan Madihah Abd Halim ◽  
Sharifah Zulaikha Syed Ahmad ◽  
Salmah Yaakop ◽  
...  

PLoS ONE ◽  
2021 ◽  
Vol 16 (1) ◽  
pp. e0244783
Author(s):  
Rodrigo Sarmiento-Garcés ◽  
Malva Isabel Medina Hernández

The loss of biodiversity—caused mainly by habitat destruction—is one of the environmental problems with major repercussions on ecosystem functioning. Nevertheless, our understanding of the functional consequences of habitat changes on the communities and ecosystems remains limited to a small number of case studies. We evaluated the change in taxonomic and functional diversity of copro-necrophagous beetles (Scarabaeinae) and their relationship with the varying environmental factors present in four habitats with different degrees of disturbance. Furthermore, we evaluated how changes in taxonomic and functional diversity affect the rates of excrement removal. The collections were carried out at four locations in the state of Santa Catarina, Southern Brazil, on natural systems with different degrees of disturbances (forests in advanced and initial succession) and agroecosystems (silviculture and pastures dedicated to livestock). We collected a total of 1266 dung beetles distributed in 35 species and classified into 11 functional groups. The taxonomic and functional diversity analyses showed that habitats that still maintain an arboreal stratum do not present differences between them, in contrast to habitats dedicated to livestock where there was a significant loss of species and functional groups. The distance between the trees, as well as the air and soil temperatures were determining factors in the selection of species and functional groups. Some of these environmental factors explain the differences in functional traits, represented as varying abundances of the species found. The rates of manure removal from the ecosystem were positively correlated to taxonomic and functional richness as well as biomass of beetles. Thus, we can conclude that habitats with tree strata have the capacity to preserve a larger proportion of the regional set of species as well as the important ones, while preserving the taxonomic and functional diversity and the ecosystem functions, such as the excrement removal rate.


Diversity ◽  
2020 ◽  
Vol 12 (2) ◽  
pp. 50 ◽  
Author(s):  
Benton N. Taylor ◽  
Ellen L. Simms ◽  
Kimberly J. Komatsu

Studies of biodiversity and ecosystem function (BEF) have long focused on the role of nitrogen (N)-fixing legumes as a functional group that occupies a distinct and important niche relative to other plants. Because of their relationship with N-fixing rhizobial bacteria, these legumes access a different pool of N than other plants and therefore directly contribute to increases in productivity and N-cycling. Despite their recognized importance in the BEF literature, the field has not moved far beyond investigating the presence/absence of the legume functional group in species mixtures. Here, we synthesize existing information on how the diversity (species richness and functional diversity) of both legumes and the rhizobia that they host impact ecosystem functions, such as nitrogen fixation and primary productivity. We also discuss the often-overlooked reciprocal direction of the BEF relationship, whereby ecosystem function can influence legume and rhizobial diversity. We focus on BEF mechanisms of selection, complementarity, facilitation, competitive interference, and dilution effects to explain how diversity in the legume–rhizobia mutualism can have either positive or negative effects on ecosystem function—mechanisms that can operate at scales from rhizobial communities affecting individual legume functions to legume communities affecting landscape-scale ecosystem functions. To fully understand the relationship between biodiversity and ecosystem function, we must incorporate the full diversity of this mutualism and its reciprocal relationship with ecosystem function into our evolving BEF framework.


Sign in / Sign up

Export Citation Format

Share Document